Red Wine Consumption and Cardiovascular Health (2024)

1. Yu C., Moore B.M., Kotchetkova I., Cordina R.L., Celermajer D.S. Causes of death in a contemporary adult congenital heart disease cohort. Heart. 2018;104:1678–1682. doi:10.1136/heartjnl-2017-312777. [PubMed] [CrossRef] [Google Scholar]

2. Chiva-Blanch G., Arranz S., Lamuela-Raventos R.M., Estruch R. Effects of Wine, Alcohol and Polyphenols on Cardiovascular Disease Risk Factors: Evidences from Human Studies. Alcohol Alcohol. 2013;48:270–277. doi:10.1093/alcalc/agt007. [PubMed] [CrossRef] [Google Scholar]

3. Steven S., Frenis K., Oelze M., Kalinovic S., Kuntic M., Jimenez M.T.B., Vujacic-Mirski K., Helmstädter J., Kröller-Schön S., Münzel T., et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxidative Med. Cell. Longev. 2019;2019:1–26. doi:10.1155/2019/7092151. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Bozkurt B., Aguilar D., Deswal A., Dunbar S.B., Francis G.S., Horwich T., Jessup M., Kosiborod M., Pritchett A.M., Ramasubbu K., et al. Contributory Risk and Management of Comorbidities of Hypertension, Obesity, Diabetes Mellitus, Hyperlipidemia, and Metabolic Syndrome in Chronic Heart Failure: A Scientific Statement From the American Heart Association. Circulation. 2016;134:535. doi:10.1161/CIR.0000000000000450. [PubMed] [CrossRef] [Google Scholar]

5. Roerecke M., Rehm J. Alcohol consumption, drinking patterns, and ischemic heart disease: a narrative review of meta-analyses and a systematic review and meta-analysis of the impact of heavy drinking occasions on risk for moderate drinkers. BMC Med. 2014;12:182. doi:10.1186/s12916-014-0182-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. DeSalvo K.B., Olson R., Casavale K.O. Dietary guidelines for Americans. Jama. 2016;315:457–458. doi:10.1001/jama.2015.18396. [PubMed] [CrossRef] [Google Scholar]

7. Di Renzo L., Marsella L.T., Carraro A., Valente R., Gualtieri P., Gratteri S., Tomasi D., Gaiotti F., De Lorenzo A. Changes in LDL Oxidative Status and Oxidative and Inflammatory Gene Expression after Red Wine Intake in Healthy People: A Randomized Trial. Mediat. Inflamm. 2015;2015:1–13. doi:10.1155/2015/317348. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Annunziata G., Maisto M., Schisano C., Ciampaglia R., Narciso V., Hassan S.T., Tenore G.C., Novellino E. Effect of grape pomace polyphenols with or without pectin on TMAO serum levels assessed by LC/MS-based assay: A preliminary clinical study on overweight/obese subjects. Front. Pharmacol. 2019;10:575. doi:10.3389/fphar.2019.00575. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Nova E., San Mauro-Martín I., Díaz-Prieto L.E., Marcos A. Wine and beer within a moderate alcohol intake is associated with higher levels of HDL-c and adiponectin. Nutr. Res. 2019;63:42–50. doi:10.1016/j.nutres.2018.12.007. [PubMed] [CrossRef] [Google Scholar]

10. Golan R., Gepner Y., Shai I.J.E.j.o.c.n. Wine and Health–New Evidence. Eur. J. Clin. Clin. Nutr. 2018;72:55–59. doi:10.1038/s41430-018-0309-5. [PubMed] [CrossRef] [Google Scholar]

11. Torres A., Cachofeiro V., Millán J., Lahera V., Nieto M., Martin R., Bello E., Alvarez-Sala L., Nieto M. Red wine intake but not other alcoholic beverages increases total antioxidant capacity and improves pro-inflammatory profile after an oral fat diet in healthy volunteers. Revista Clínica Española. 2015;215:486–494. doi:10.1016/j.rce.2015.07.002. [PubMed] [CrossRef] [Google Scholar]

12. Lamuela-Raventós R.M., Estruch R. Mechanism of the Protective Effects of Wine Intake on Cardiovascular Disease. In: Moreno-Arribas M.V., Suáldea B.B., editors. Wine Safety, Consumer Preference, and Human Health. Springer; Basel, Switzerland: 2016. pp. 231–239. [Google Scholar]

13. Snopek L., Mlcek J., Sochorova L., Baron M., Hlavacova I., Jurikova T., Kizek R., Sedlackova E., Sochor J. Contribution of Red Wine Consumption to Human Health Protection. Molcules. 2018;23:1684. doi:10.3390/molecules23071684. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Lippi G., Franchini M., Favaloro E.J., Targher G. Moderate red wine consumption and cardiovascular disease risk: beyond the “French paradox” In: Favaloro E.J., Levi M., Lisman T., Kwaan H.C., Schulman S., editors. Proceedings of Seminars in thrombosis and hemostasis. Thieme Medical Publishers; Stuttgart, Germany: 2010. pp. 059–070. [PubMed] [Google Scholar]

15. Suo H., Tian R., Li J., Zhang S., Cui Y., Li L., Sun B. Compositional characterization study on high -molecular -mass polymeric polyphenols in red wines by chemical degradation. Food Res. Int. 2019;123:440–449. doi:10.1016/j.foodres.2019.04.056. [PubMed] [CrossRef] [Google Scholar]

16. Šeruga M., Novak I., Jakobek L. Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chem. 2011;124:1208–1216. doi:10.1016/j.foodchem.2010.07.047. [CrossRef] [Google Scholar]

17. Stephan L.S., Almeida E.D., Markoski M.M., Garavaglia J., Marcadenti A. Red Wine, Resveratrol and Atrial Fibrillation. Nutrients. 2017;9:1190. doi:10.3390/nu9111190. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Doonan B., Iraj S., Pellegrino L., Hsieh T.-C., Wu J., Watson R.R., Zibadi S. 22. The French paradox revisited: cardioprotection via hormesis, red wine and resveratrol. In: Watson R.R., Zibadi S., editors. Handbook of nutrition and diet in therapy of bone diseases. Volume 14. Wageningen Academic Publishers; Wageningen, The Netherlands: 2017. pp. 467–485. Wageningen Academic Publishers. [Google Scholar]

19. Sakaki J., Melough M., Gil Lee S., Pounis G., Chun O.K. Polyphenol-Rich Diets in Cardiovascular Disease Prevention. In: Pounis G., editor. Analysis in Nutrition Research. Elsevier; Amsterdam, The Netherlands: 2019. pp. 259–298. [Google Scholar]

20. Ivanova V., Stefova M., Chinnici F. Determination of the polyphenol contents in Macedonian grapes and wines by standardized spectrophotometric methods. J. Serbian Chem. Soc. 2010;75:45–59. doi:10.2298/JSC1001045I. [CrossRef] [Google Scholar]

21. Vázquez E.S., Segade S.R., Fernández I.O. Effect of the winemaking technique on phenolic composition and chromatic characteristics in young red wines. Eur. Food Res. Technol. 2010;231:789–802. doi:10.1007/s00217-010-1332-5. [CrossRef] [Google Scholar]

22. Ivanova-Petropulos V., Hermosín-Gutíerrez I., Boros B., Stefova M., Stafilov T., Vojnoski B., Dörnyei Á., Kilár F. Phenolic compounds and antioxidant activity of Macedonian red wines. J. Food Compos. Anal. 2015;41:1–14. doi:10.1016/j.jfca.2015.01.002. [CrossRef] [Google Scholar]

23. Cuzmar P.D., Salgado E., Ribalta-Pizarro C., Olaeta J.A., López E., Pastenes C., Cáceres-Mella A. Phenolic composition and sensory characteristics of Cabernet Sauvignon wines: effect of water stress and harvest date. Int. J. Food Sci. Technol. 2018;53:1726–1735. doi:10.1111/ijfs.13757. [CrossRef] [Google Scholar]

24. Rentzsch M., Wilkens A., Winterhalter P. Non-flavonoid phenolic compounds. In: Moreno-Arribas M.V., Polo C., editors. Wine chemistry and biochemistry. Springer; New York City, NY, USA: 2009. pp. 509–527. [Google Scholar]

25. Lofrano G., Meriç S. A Review On Occurrence, Measurement, Toxicity And Tannin Removal Processes From Wastewaters. Environ. Eng. Manag. J. 2019;18:109–123. [Google Scholar]

26. Cozzolino D. The role of visible and infrared spectroscopy combined with chemometrics to measure phenolic compounds in grape and wine samples. Molecules. 2015;20:726–737. doi:10.3390/molecules20010726. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Basli A., Soulet S., Chaher N., Mérillon J.-M., Chibane M., Monti J.-P., Richard T. Wine Polyphenols: Potential Agents in Neuroprotection. Oxidative Med. Cell. Longev. 2012;2012:1–14. doi:10.1155/2012/805762. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Ferreira-Lima N., Vallverdú-Queralt A., Meudec E., Pinasseau L., Verbaere A., Bordignon-Luiz M.T., Le Guernevé C., Cheynier V., Sommerer N. Quantification of hydroxycinnamic derivatives in wines by UHPLC-MRM-MS. Anal. Bioanal. Chem. 2018;410:3483–3490. doi:10.1007/s00216-017-0759-y. [PubMed] [CrossRef] [Google Scholar]

29. Del Prete V., Costantini A., Cecchini F., Morassut M., Garcia-Moruno E. Occurrence of biogenic amines in wine: The role of grapes. Food Chem. 2009;112:474–481. doi:10.1016/j.foodchem.2008.05.102. [CrossRef] [Google Scholar]

30. Lima A., Oliveira C., Santos C., Campos F.M., Couto J.A. Phenolic composition of monovarietal red wines regarding volatile phenols and its precursors. Eur. Food Res. Technol. 2018;244:1985–1994. doi:10.1007/s00217-018-3110-8. [CrossRef] [Google Scholar]

31. Nardini M., Forte M., Vrhovsek U., Mattivi F., Viola R., Scaccini C. White Wine Phenolics Are Absorbed and Extensively Metabolized in Humans. J. Agric. Food Chem. 2009;57:2711–2718. doi:10.1021/jf8034463. [PubMed] [CrossRef] [Google Scholar]

32. Garrido J., Borges F. Wine and grape polyphenols — A chemical perspective. Food Res. Int. 2013;54:1844–1858. doi:10.1016/j.foodres.2013.08.002. [CrossRef] [Google Scholar]

33. Kiselev K.V. Perspectives for production and application of resveratrol. Appl. Microbiol. Biotechnol. 2011;90:417–425. doi:10.1007/s00253-011-3184-8. [PubMed] [CrossRef] [Google Scholar]

34. Vitaglione P., Sforza S., Rio D. In: Occurrence, Bioavailability and Metabolism of Resveratrol. Spencer J.P.E., Crozier A., editors. CRC Pres; Boca Raton, FI, USA: 2012. pp. 167–182. [Google Scholar]

35. Hussein M.A. A convenient mechanism for the free radical scavenging activity of resveratrol. Int. J. Phytomedicine. 2011;3:459. [Google Scholar]

36. Paulo L., Domingues F., Queiroz J.A., Gallardo E. Development and Validation of an Analytical Method for the Determination oftrans- andcis-Resveratrol in Wine: Analysis of Its Contents in 186 Portuguese Red Wines. J. Agric. Food Chem. 2011;59:2157–2168. doi:10.1021/jf105004y. [PubMed] [CrossRef] [Google Scholar]

37. Nour V., Trandafir I., Muntean C. Ultraviolet Irradiation of Trans-Resveratrol and HPLC Determination of Trans-Resveratrol and Cis-Resveratrol in Romanian Red Wines. J. Chromatogr. Sci. 2012;50:920–927. doi:10.1093/chromsci/bms091. [PubMed] [CrossRef] [Google Scholar]

38. Dudley J., Das S., Mukherjee S., Das D.K. RETRACTED: Resveratrol, a unique phytoalexin present in red wine, delivers either survival signal or death signal to the ischemic myocardium depending on dose. J. Nutr. Biochem. 2009;20:443–452. doi:10.1016/j.jnutbio.2008.05.003. [PubMed] [CrossRef] [Google Scholar]

39. Godelmann R., Fang F., Humpfer E., Schütz B., Bansbach M., Schäfer H., Spraul M. Targeted and Nontargeted Wine Analysis by1H NMR Spectroscopy Combined with Multivariate Statistical Analysis. Differentiation of Important Parameters: Grape Variety, Geographical Origin, Year of Vintage. J. Agric. Food Chem. 2013;61:5610–5619. doi:10.1021/jf400800d. [PubMed] [CrossRef] [Google Scholar]

40. Wu J.M., Hsieh T.c. Resveratrol: a cardioprotective substance. Ann. New York Acad. Sci. 2011;1215:16–21. doi:10.1111/j.1749-6632.2010.05854.x. [PubMed] [CrossRef] [Google Scholar]

41. Sahebkar A. Effects of resveratrol supplementation on plasma lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2013;71:822–835. doi:10.1111/nure.12081. [PubMed] [CrossRef] [Google Scholar]

42. Penumathsa S.V., Maulik N. Resveratrol: a promising agent in promoting cardioprotection against coronary heart disease. Can. J. Physiol. Pharmacol. 2009;87:275–286. doi:10.1139/Y09-013. [PubMed] [CrossRef] [Google Scholar]

43. Sakata Y., Zhuang H., Kwansa H., Koehler R.C., Doré S. Resveratrol protects against experimental stroke: putative neuroprotective role of heme oxygenase 1. Exp. Neurol. 2010;224:325–329. doi:10.1016/j.expneurol.2010.03.032. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Pandey K.B., Rizvi S.I. Anti-oxidative action of resveratrol: Implications for human health. Arab. J. Chem. 2011;4:293–298. doi:10.1016/j.arabjc.2010.06.049. [CrossRef] [Google Scholar]

45. Cheng C.K., Luo J., Lau C.W., Chen Z., Tian X.Y., Huang Y. Pharmacological Basis and New Insights of Resveratrol Action in the Cardiovascular System. Br. J. Pharmacol. 2019 doi:10.1111/bph.14801. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Magyar K., Halmosi R., Palfi A., Feher G., Czopf L., Fulop A., Battyany I., Sumegi B., Toth K., Szabados E. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin. Hemorheol. Microcirc. 2012;50:179–187. [PubMed] [Google Scholar]

47. Romain C., Gaillet S., Carillon J., Vidé J., Ramos J., Izard J.-C., Cristol J.-P., Rouanet J.-M. Vineatrol and Cardiovascular Disease: Beneficial Effects of a Vine-Shoot Phenolic Extract in a Hamster Atherosclerosis Model. J. Agric. Food Chem. 2012;60:11029–11036. doi:10.1021/jf303549t. [PubMed] [CrossRef] [Google Scholar]

48. Fujitaka K., Otani H., Jo F., Jo H., Nomura E., Iwasaki M., Nishikawa M., Iwasaka T., Das D.K. Modified resveratrol Longevinex improves endothelial function in adults with metabolic syndrome receiving standard treatment. Nutr. Res. 2011;31:842–847. doi:10.1016/j.nutres.2011.09.028. [PubMed] [CrossRef] [Google Scholar]

49. D’Archivio M., Filesi C., Varì R., Scazzocchio B., Masella R. Bioavailability of the Polyphenols: Status and Controversies. Int. J. Mol. Sci. 2010;11:1321–1342. doi:10.3390/ijms11041321. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Wang P., Sang S. Metabolism and pharmaco*kinetics of resveratrol and pterostilbene. BioFactors. 2018;44:16–25. doi:10.1002/biof.1410. [PubMed] [CrossRef] [Google Scholar]

51. Tomé-Carneiro J., Gonzálvez M., Larrosa M., García-Almagro F.J., Avilés-Plaza F., Parra S., Yáñez-Gascón M.J., Ruiz-Ros J.A., García-Conesa M.T., Tomás-Barberán F.A. Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and A po B in patients undergoing primary prevention of cardiovascular disease: A triple-blind, 6-month follow-up, placebo-controlled, randomized trial. Mol. Nutr. Food Res. 2012;56:810–821. doi:10.1002/mnfr.201100673. [PubMed] [CrossRef] [Google Scholar]

52. Tomé-Carneiro J., Gonzálvez M., Larrosa M., Yáñez-Gascón M.J., García-Almagro F.J., Ruiz-Ros J.A., García-Conesa M.T., Tomás-Barberán F.A., Espin J.C. One-Year Consumption of a Grape Nutraceutical Containing Resveratrol Improves the Inflammatory and Fibrinolytic Status of Patients in Primary Prevention of Cardiovascular Disease. Am. J. Cardiol. 2012;110:356–363. doi:10.1016/j.amjcard.2012.03.030. [PubMed] [CrossRef] [Google Scholar]

53. Aluyen J.K., Ton Q.N., Tran T., Yang A.E., Gottlieb H.B., Bellanger R.A. Resveratrol: Potential as Anticancer Agent. J. Diet. Suppl. 2012;9:45–56. doi:10.3109/19390211.2011.650842. [PubMed] [CrossRef] [Google Scholar]

54. Peng X.L., Qu W., Wang L.Z., Huang B.Q., Ying C.J., Sun X.F., Hao L.P. Resveratrol Ameliorates High Glucose and High-Fat/Sucrose Diet-Induced Vascular Hyperpermeability Involving Cav-1/eNOS Regulation. PLOS ONE. 2014;9:e113716. doi:10.1371/journal.pone.0113716. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Oh W.Y., Shahidi F. Antioxidant activity of resveratrol ester derivatives in food and biological model systems. Food Chem. 2018;261:267–273. doi:10.1016/j.foodchem.2018.03.085. [PubMed] [CrossRef] [Google Scholar]

56. Markoski M.M., Garavaglia J., Oliveira A., Olivaes J., Marcadenti A. Molecular Properties of Red Wine Compounds and Cardiometabolic Benefits. Nutr. Metab. Insights. 2016;9:51–57. doi:10.4137/NMI.S32909. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Feng W., Hao Z., Li M. In: Isolation and Structure Identification of Flavonoids. Justino G.C., editor. IntechOpen; London, UK: 2017. pp. 17–43. [Google Scholar]

58. Gutiérrez-Grijalva E., Picos-Salas M., Leyva-López N., Criollo-Mendoza M., Vazquez-Olivo G., Heredia J. Flavonoids and phenolic acids from oregano: occurrence, biological activity and health benefits. Plants. 2018;7:2. doi:10.3390/plants7010002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Escobar-Cévoli R., Castro-Espín C., Béraud V., Buckland G., Zamora-Ros R., Béraud G.B.V. An Overview of Global Flavonoid Intake and its Food Sources. Flavonoids Biosynth. Hum. Health. 2017 [Google Scholar]

60. Gutiérrez-Grijalva E.P. 1. Review: dietary phenolic compounds, health benefits and bioaccessibility. Arch. Latinoam. Nutr. 2016:66. [PubMed] [Google Scholar]

61. Mozaffarian D., Wu J.H. Flavonoids, Dairy Foods, and Cardiovascular and Metabolic Health: A Review of Emerging Biologic Pathways. Circ. Res. 2018;122:369–384. doi:10.1161/CIRCRESAHA.117.309008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Afroz R., Tanvir E., Little P. Honey-derived flavonoids: natural products for the prevention of atherosclerosis and cardiovascular diseases. Clin. Exp. Pharmacol. 2016;6 [Google Scholar]

63. Bondonno C.P., Croft K.D., Ward N., Considine M.J., Hodgson J.M. Dietary flavonoids and nitrate: effects on nitric oxide and vascular function. Nutr. Rev. 2015;73:216–235. doi:10.1093/nutrit/nuu014. [PubMed] [CrossRef] [Google Scholar]

64. Parasuraman S., David A.V.A., Arulmoli R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016;10:84–89. doi:10.4103/0973-7847.194044. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Dalgaard F., Bondonno N., Murray K., Bondonno C.P., Lewis J.R., Croft K.D., Kyrø C., Gislason G., Scalbert A., Cassidy A. Higher Habitual Flavonoid Intake Is Associated with Lower Atherosclerotic. Cardiovasc. Dis. Hosp. :2019. [Google Scholar]

66. Kiokias S., Proestos C., Oreopoulou V. Effect of Natural Food Antioxidants against LDL and DNA Oxidative Changes. Antioxidants. 2018;7:133. doi:10.3390/antiox7100133. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Kustrin S., Hettiarachchi C., Morton D., Ražić S. Analysis of phenolics in wine by high performance thin-layer chromatography with gradient elution and high resolution plate imaging. J. Pharm. Biomed. Anal. 2014;102C:93–99. [PubMed] [Google Scholar]

68. Barnaba C., Dellacassa E., Nicolini G., Nardin T., Malacarne M., Larcher R. Identification and quantification of 56 targeted phenols in wines, spirits, and vinegars by online solid-phase extraction – ultrahigh-performance liquid chromatography – quadrupole-orbitrap mass spectrometry. J. Chromatogr. A. 2015;1423:124–135. doi:10.1016/j.chroma.2015.10.085. [PubMed] [CrossRef] [Google Scholar]

69. Cabrera-Banegil M., Hurtado-sánchez M.C., Galeano-Díaz T., Durán-Merás I. Front-face fluorescence spectroscopy combined with second-order multivariate algorithms for the quantification of polyphenols in red wine samples. Food Chem. 2016;220 doi:10.1016/j.foodchem.2016.09.152. [PubMed] [CrossRef] [Google Scholar]

70. Singh M., Kaur M., Silakari O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014;84:206–239. doi:10.1016/j.ejmech.2014.07.013. [PubMed] [CrossRef] [Google Scholar]

71. Li C., He J., Gao Y., Xing Y., Hou J., Tian J.J.C.t. Preventive Effect of Total Flavones of Cho*rospondiasaxillaries on Ischemia/Reperfusion-Induced Myocardial Infarction-Related MAPK Signaling Pathway. Cardiovasc. Toxicol. 2014;14:145–152. doi:10.1007/s12012-013-9238-7. [PubMed] [CrossRef] [Google Scholar]

72. Heiss C., Keen C.L., Kelm M. Flavanols and cardiovascular disease prevention. Eur. Hear. J. 2010;31:2583–2592. doi:10.1093/eurheartj/ehq332. [PubMed] [CrossRef] [Google Scholar]

73. Ramirez-Sanchez I., Maya L., Ceballos G., Villarreal F. (-)-epicatechin activation of endothelial cell endothelial nitric oxide synthase, nitric oxide, and related signaling pathways. Hypertension. 2010;55:1398–1405. doi:10.1161/HYPERTENSIONAHA.109.147892. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Perez-Vizcaino F., Duarte J. Flavonols and cardiovascular disease. Mol. Asp. Med. 2010;31:478–494. doi:10.1016/j.mam.2010.09.002. [PubMed] [CrossRef] [Google Scholar]

75. Annapurna A., Reddy C.S., Akondi R.B., Rao S.R.C. Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. J. Pharm. Pharmacol. 2009;61:1365–1374. doi:10.1211/jpp.61.10.0014. [PubMed] [CrossRef] [Google Scholar]

76. Castañeda A., Pacheco Hernandez L., Páez E., Rodriguez J., Galán-Vidal C. Chemical studies of anthocyanins: A review. Food Chem. 2009;113:859–871. doi:10.1016/j.foodchem.2008.09.001. [CrossRef] [Google Scholar]

77. Sánchez-Ilárduya M.B., Sánchez-Fernández C., Garmón-Lobato S., Abad-García B., Berrueta L.A., Gallo B., Vicente F. Detection of non-coloured anthocyanin–flavanol derivatives in Rioja aged red wines by liquid chromatography–mass spectrometry. Talanta. 2014;121:81–88. doi:10.1016/j.talanta.2013.12.066. [PubMed] [CrossRef] [Google Scholar]

78. Basalekou M., Kyraleou M., Pappas C., Tarantilis P., Kotseridis Y., Kallithraka S. Proanthocyanidin content as an astringency estimation tool and maturation index in red and white winemaking technology. Food Chem. 2019;299:125135. doi:10.1016/j.foodchem.2019.125135. [PubMed] [CrossRef] [Google Scholar]

79. Lee Y.-M., Yoon Y., Yoon H., Park H.-M., Song S., Yeum K.-J.J.N. Dietary anthocyanins against obesity and inflammation. Nutrients. 2017;9:1089. doi:10.3390/nu9101089. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Cassidy A., Bertoia M., Chiuve S., Flint A., Forman J., Rimm E.B. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutr. 2016;104:587–594. doi:10.3945/ajcn.116.133132. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Cassidy A., Mukamal K.J., Liu L., Franz M., Eliassen A.H., Rimm E.B. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation. 2013;127:188–196. doi:10.1161/CIRCULATIONAHA.112.122408. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Cassidy A., Rimm E.B., O’Reilly É.J., Logroscino G., Kay C., Chiuve S.E., Rexrode K.M. Dietary flavonoids and risk of stroke in women. Stroke. 2012;43:946–951. doi:10.1161/STROKEAHA.111.637835. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Zhu Y., Huang X., Zhang Y., Wang Y., Liu Y., Sun R., Xia M. Anthocyanin Supplementation Improves HDL-Associated Paraoxonase 1 Activity and Enhances Cholesterol Efflux Capacity in Subjects With Hypercholesterolemia. J. Clin. Endocrinol. Metab. 2014;99:561–569. doi:10.1210/jc.2013-2845. [PubMed] [CrossRef] [Google Scholar]

84. McCullough M.L., Peterson J.J., Patel R., Jacques P.F., Shah R., Dwyer J.T. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am. J. Clin. Nutr. 2012;95:454–464. doi:10.3945/ajcn.111.016634. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Cassidy A., Rogers G., Peterson J.J., Dwyer J.T., Lin H., Jacques P.F. Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am. J. Clin. Nutr. 2015;102:172–181. doi:10.3945/ajcn.115.108555. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Huang W.-Y., Liu Y.-M., Wang J., Wang X.-N., Li C.-Y. Anti-Inflammatory Effect of the Blueberry Anthocyanins Malvidin-3-Glucoside and Malvidin-3-Galactoside in Endothelial Cells. Molecules. 2014;19:12827–12841. doi:10.3390/molecules190812827. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Chira K., Pacella N., Jourdes M., Teissedre P.-L. Chemical and sensory evaluation of Bordeaux wines (Cabernet-Sauvignon and Merlot) and correlation with wine age. Food Chem. 2011;126:1971–1977. doi:10.1016/j.foodchem.2010.12.056. [PubMed] [CrossRef] [Google Scholar]

88. Ghosh D.J.I.J.P.R.R. Tannins from foods to combat diseases. Int. J. Pharma Res. Rev. 2015;4:40–44. [Google Scholar]

89. De Morais Cardoso L., Pinheiro S.S., Martino H.S.D., Pinheiro-Sant’Ana H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr. 2017;57:372–390. doi:10.1080/10408398.2014.887057. [PubMed] [CrossRef] [Google Scholar]

90. Stark T., Wollmann N., Wenker K., Lösch S., Glabasnia A., Hofmann T. Matrix-Calibrated LC-MS/MS Quantitation and Sensory Evaluation of Oak Ellagitannins and Their Transformation Products in Red Wines. J. Agric. Food Chem. 2010;58:6360–6369. doi:10.1021/jf100884y. [PubMed] [CrossRef] [Google Scholar]

91. García-Estévez I., Escribano-Bailón M.T., Rivas-Gonzalo J.-C., Alcalde-Eon C. Validation of a Mass Spectrometry Method To Quantify Oak Ellagitannins in Wine Samples. J. Agric. Food Chem. 2012;60:1373–1379. doi:10.1021/jf203836a. [PubMed] [CrossRef] [Google Scholar]

92. Jourdes M., Michel J., Saucier C., Quideau S., Teissedre P.-L. Identification, amounts, and kinetics of extraction of C-glucosidic ellagitannins during wine aging in oak barrels or in stainless steel tanks with oak chips. Anal. Bioanal. Chem. 2011;401:1531–1539. doi:10.1007/s00216-011-4949-8. [PubMed] [CrossRef] [Google Scholar]

93. Ma W., Guo A., Zhang Y., Wang H., Liu Y., Li H.J. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci. Technol. 2014;40:6–19. doi:10.1016/j.tifs.2014.08.001. [CrossRef] [Google Scholar]

94. Lu S.-C., Liao W.-R., Chen S.-F. Quantification of Trans-resveratrol in Red Wines Using QuEChERS Extraction Combined with Liquid Chromatography–Tandem Mass Spectrometry. Anal. Sci. 2018;34:439–444. doi:10.2116/analsci.17P528. [PubMed] [CrossRef] [Google Scholar]

95. Guerrero R.F., García-Parrilla M.C., Puertas B., Cantos-Villar E. Wine, resveratrol and health: a review. Nat. Prod. Commun. 2009;4:1934578X0900400503. doi:10.1177/1934578X0900400503. [PubMed] [CrossRef] [Google Scholar]

96. Caruana M., Cauchi R., Vassallo N. Putative Role of Red Wine Polyphenols against Brain Pathology in Alzheimer’s and Parkinson’s Disease. Front. Nutr. 2016;3:31. doi:10.3389/fnut.2016.00031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Chorti E., Guidoni S., Ferrandino A., Novello V.J. Effect of different cluster sunlight exposure levels on ripening and anthocyanin accumulation in Nebbiolo grapes. American Society for Enology and Viticulture. 2010;61:23–30. [Google Scholar]

98. Xu C., Zhang Y., Zhu L., Huang Y., Lu J.J. Influence of growing season on phenolic compounds and antioxidant properties of grape berries from vines grown in subtropical climate. J. Agric. Food Chem. 2011;59:1078–1086. doi:10.1021/jf104157z. [PubMed] [CrossRef] [Google Scholar]

99. Chen S., Zhang F., Ning J., Liu X., Zhang Z., Yang S. Predicting the anthocyanin content of wine grapes by NIR hyperspectral imaging. Food Chem. 2015;172:788–793. doi:10.1016/j.foodchem.2014.09.119. [PubMed] [CrossRef] [Google Scholar]

100. Haseeb S., Alexander B., Baranchuk A. Wine and cardiovascular health: A comprehensive review. Circulation. 2017;136:1434–1448. doi:10.1161/CIRCULATIONAHA.117.030387. [PubMed] [CrossRef] [Google Scholar]

101. Casassa L.F., Harbertson J.F. Extraction, Evolution, and Sensory Impact of Phenolic Compounds During Red Wine Maceration. Annu. Rev. Food Sci. Technol. 2014;5:83–109. doi:10.1146/annurev-food-030713-092438. [PubMed] [CrossRef] [Google Scholar]

102. Saucier C. How do wine polyphenols evolve during wine ageing? Cerevisia. 2010;35:11–15. doi:10.1016/j.cervis.2010.05.002. [CrossRef] [Google Scholar]

103. Muccillo L., Gambuti A., Frusciante L., Iorizzo M., Moio L., Raieta K., Rinaldi A., Colantuoni V., Aversano R. Biochemical features of native red wines and genetic diversity of the corresponding grape varieties from Campania region. Food Chem. 2014;143:506–513. doi:10.1016/j.foodchem.2013.07.133. [PubMed] [CrossRef] [Google Scholar]

104. Niculescu V.-C., Paun N., Ionete R.-E. In: The Evolution of Polyphenols from Grapes to Wines. Justino G.C., editor. IntechOpen; London, UK: 2018. [Google Scholar]

105. Sanz M., De Simón B.F., Esteruelas E., Muñoz Á.M., Cadahía E., Hernández M.T., Estrella I., Martínez J., De Simón M.B.F. Polyphenols in red wine aged in acacia (Robinia pseudoacacia) and oak (Quercus petraea) wood barrels. Anal. Chim. Acta. 2012;732:83–90. doi:10.1016/j.aca.2012.01.061. [PubMed] [CrossRef] [Google Scholar]

106. Arriola L., Martinez-Camblor P., Larrañaga N., Basterretxea M., Amiano P., Moreno-Iribas C., Carracedo R., Agudo A., Ardanaz E., Barricarte A. Alcohol intake and the risk of coronary heart disease in the Spanish EPIC cohort study. Heart. 2010;96:124–130. doi:10.1136/hrt.2009.173419. [PubMed] [CrossRef] [Google Scholar]

107. E Ronksley P., E Brien S., Turner B.J., Mukamal K.J., A Ghali W. Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ. 2011;342:d671. doi:10.1136/bmj.d671. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Djoussé L., Lee I.-M., Buring J.E., Gaziano J.M. Alcohol consumption and risk of cardiovascular disease and mortality in women: potential mediating mechanisms. Circulation. 2009;120:237. doi:10.1161/CIRCULATIONAHA.108.832360. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Pavlidou E., Mantzorou M., Fasoulas A., Tryfonos C., Petridis D., Giaginis C. Wine: An Aspiring Agent in Promoting Longevity and Preventing Chronic Diseases. Diseases. 2018;6:73. doi:10.3390/diseases6030073. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Da Luz P.L., Coimbra S., Favarato D., Albuquerque C., Mochiduky R.I., Rochitte C.E., Hojaij E., Gonsalves C.R.L., Laurindo F.R. Coronary artery plaque burden and calcium scores in healthy men adhering to long-term wine drinking or alcohol abstinence %J Brazilian. J. Med. Biol. Res. 2014;47:697–705. doi:10.1590/1414-431x20143880. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Marques-Vidal P., Bochud M., Paccaud F., Waterworth D., Bergmann S., Preisig M., Waeber G., Vollenweider P. No interaction between alcohol consumption and HDL-related genes on HDL cholesterol levels. Atherosclerosis. 2010;211:551–557. doi:10.1016/j.atherosclerosis.2010.04.001. [PubMed] [CrossRef] [Google Scholar]

112. Park H., Kim K. Association of Alcohol Consumption with Lipid Profile in Hypertensive Men. Alcohol Alcohol. 2012;47:282–287. doi:10.1093/alcalc/ags019. [PubMed] [CrossRef] [Google Scholar]

113. Magnus P., Bakke E., Hoff D.A., Høiseth G., Graff-Iversen S., Peggy Knudsen G., Myhre R., Trygve Normann P., Næss Ø., Tambs K. Controlling for high-density lipoprotein cholesterol does not affect the magnitude of the relationship between alcohol and coronary heart disease. Circulation. 2011;124:2296–2302. doi:10.1161/CIRCULATIONAHA.111.036491. [PubMed] [CrossRef] [Google Scholar]

114. E Brien S., E Ronksley P., Turner B.J., Mukamal K.J., A Ghali W. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ. 2011;342:d636. doi:10.1136/bmj.d636. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Chiva-Blanch G., Urpi-Sarda M., Ros E., Valderas-Martínez P., Casas R., Arranz S., Guillén M., Lamuela-Raventos R.M., Llorach R., Andres-Lacueva C., et al. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: A randomized clinical trial. Clin. Nutr. 2013;32:200–206. doi:10.1016/j.clnu.2012.08.022. [PubMed] [CrossRef] [Google Scholar]

116. Paul K., Bairwa N.K., Kazal H., Batta A.J. To Study the effects of Alcohol on Lipid Profile on Basis of Amount, Type and Duration of Alcohol Consumption. Indian J. Public Health Res. Dev. 2015;6:302–307. doi:10.5958/0976-5506.2015.00186.2. [CrossRef] [Google Scholar]

117. Brasnyó P., Molnár G.A., Mohás M., Markó L., Laczy B., Cseh J., Mikolás E., Szijártó I.A., Mérei Á., Halmai R., et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 2011;106:383–389. doi:10.1017/S0007114511000316. [PubMed] [CrossRef] [Google Scholar]

118. European Commission Commision Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J. Eur. Union. 2006 Dec 19;364:365/5–365/24. [Google Scholar]

119. Baliunas D.O., Taylor B.J., Irving H., Roerecke M., Patra J., Mohapatra S., Rehm J. Alcohol as a risk factor for type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2009;32:2123–2132. doi:10.2337/dc09-0227. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. A Mekary R., Rimm E.B., Giovannucci E., Stampfer M.J., Willett W.C., Ludwig D.S., Hu F.B. Joint association of glycemic load and alcohol intake with type 2 diabetes incidence in women. Am. J. Clin. Nutr. 2011;94:1525–1532. doi:10.3945/ajcn.111.023754. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Ramadori G., Gautron L., Fujikawa T., Vianna C.R., Elmquist J.K., Coppari R. Central administration of resveratrol improves diet-induced diabetes. Endocrinology. 2009;150:5326–5333. doi:10.1210/en.2009-0528. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Tangney C.C., Rasmussen H.E.J.C.a.r. Polyphenols, inflammation, and cardiovascular disease. Curr. Atheroscler. Rep. 2013;15:324. doi:10.1007/s11883-013-0324-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Holthoff J.H., Woodling K.A., Doerge D.R., Burns S.T., Hinson J.A., Mayeux P.R. Resveratrol, a dietary polyphenolic phytoalexin, is a functional scavenger of peroxynitrite. Biochem. Pharmacol. 2010;80:1260–1265. doi:10.1016/j.bcp.2010.06.027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Prasad K. Resveratrol, Wine, and Atherosclerosis. Int. J. Angiol. 2012;21:7–18. doi:10.1055/s-0032-1306417. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Estruch R., Sacanella E., Mota F., Chiva-Blanch G., Antúnez E., Casals E., Deulofeu R., Rotilio D., Andres-Lacueva C., Lamuela-Raventos R.M. Moderate consumption of red wine, but not gin, decreases erythrocyte superoxide dismutase activity: A randomised cross-over trial. Nutr. Metab. Cardiovasc. Dis. 2011;21:46–53. doi:10.1016/j.numecd.2009.07.006. [PubMed] [CrossRef] [Google Scholar]

126. Chiva-Blanch G., Urpi-Sarda M., Ros E., Arranz S., Valderas-Martínez P., Casas R., Sacanella E., Llorach R., Lamuela-Raventos R.M., Andres-Lacueva C., et al. Dealcoholized Red Wine Decreases Systolic and Diastolic Blood Pressure and Increases Plasma Nitric Oxide. Circ. Res. 2012;111:1065–1068. doi:10.1161/CIRCRESAHA.112.275636. [PubMed] [CrossRef] [Google Scholar]

127. Egert S., Bosy-Westphal A., Seiberl J., Kürbitz C., Settler U., Plachta-Danielzik S., Wagner A.E., Frank J., Schrezenmeir J., Rimbach G., et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br. J. Nutr. 2009;102:1065–1074. doi:10.1017/S0007114509359127. [PubMed] [CrossRef] [Google Scholar]

128. Bulut D., Jelich U., Dacanay-Schwarz R., Mügge A. Red Wine Ingestion Prevents Microparticle Formation After a Single High-Fat Meal—A Crossover Study in Healthy Humans. J. Cardiovasc. Pharmacol. 2013;61:489–494. doi:10.1097/FJC.0b013e31828ac882. [PubMed] [CrossRef] [Google Scholar]

129. Trpkovic A., Resanovic I., Stanimirovic J., Radak D., Mousa S.A., Cenic-Milosevic D., Jevremovic D., Isenovic E.R. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit. Rev. Clin. Lab. Sci. 2015;52:70–85. doi:10.3109/10408363.2014.992063. [PubMed] [CrossRef] [Google Scholar]

130. Bandeali S., Farmer J. High-Density Lipoprotein and Atherosclerosis: The Role of Antioxidant Activity. Curr. Atheroscler. Rep. 2012;14:101–107. doi:10.1007/s11883-012-0235-2. [PubMed] [CrossRef] [Google Scholar]

131. Lafta M.A.J.J.N.S.R. A comparative study for some atherogenic indices in sera of myocardial infarction, ischemic heart disease patients and control. J. Nat. Sci. Res. 2014:121–128. [Google Scholar]

Red Wine Consumption and Cardiovascular Health (2024)
Top Articles
Latest Posts
Article information

Author: Dong Thiel

Last Updated:

Views: 6435

Rating: 4.9 / 5 (79 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Dong Thiel

Birthday: 2001-07-14

Address: 2865 Kasha Unions, West Corrinne, AK 05708-1071

Phone: +3512198379449

Job: Design Planner

Hobby: Graffiti, Foreign language learning, Gambling, Metalworking, Rowing, Sculling, Sewing

Introduction: My name is Dong Thiel, I am a brainy, happy, tasty, lively, splendid, talented, cooperative person who loves writing and wants to share my knowledge and understanding with you.