Link between Aluminum and the Pathogenesis of Alzheimer's Disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses (2024)

1. Shiraki H, Yase Y. Amyotrophic lateral sclerosis and Parkinsonism-dementia in the Kii peninsula: comparison with the same disorders in Guam and with Alzheimer’s disease. Handbook of Clinical Neurology. 1991;15:273–300. [Google Scholar]

2. Petrik MS, Wong MC, Tabata RC, Garry RF, Shaw CA. Aluminum adjuvant linked to Gulf War illness induces motor neuron death in mice. NeuroMolecular Medicine. 2007;9(1):83–100. [PubMed] [Google Scholar]

3. Campbell A. The potential role of aluminium in Alzheimer’s disease. Nephrology Dialysis Transplantation. 2002;17(2):17–20. [PubMed] [Google Scholar]

4. McLachlan DR. Aluminium and the risk for Alzheimer’s disease. Environmetrics. 1995;6(3):233–275. [Google Scholar]

5. Zatta P, editor. Recent topics in aluminium chemistry. Coordination Chemistry Reviews. 2002;228(2) [Google Scholar]

6. Kawahara M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. Journal of Alzheimer’s Disease. 2005;8(2):171–182. [PubMed] [Google Scholar]

7. Zatta P, Lucchini R, van Rensburg SJ, Taylor A. The role of metals in neurodegenerative processes: aluminum, manganese, and zinc. Brain Research Bulletin. 2003;62(1):15–28. [PubMed] [Google Scholar]

8. Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron. 1991;6(4):487–498. [PubMed] [Google Scholar]

9. Klatzo I, Wisniewski H, Streicher E. Experimental production of neurofibrillary degeneration I. Light microscopic observation. Journal of Neuropathology & Experimental Neurology. 1965;24:187–199. [PubMed] [Google Scholar]

10. Crapper DR, Krishnan SS, Dalton AJ. Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science. 1973;180(4085):511–513. [PubMed] [Google Scholar]

11. Martyn CN, Osmond C, Edwardson JA, Barker DJP, Harris EC, Lacey RF. Geographical relation between Alzheimer’s disease and aluminium in drinking water. The Lancet. 1989;1(8629):59–62. [PubMed] [Google Scholar]

12. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–356. [PubMed] [Google Scholar]

13. Wirths O, Multhaup G, Bayer TA. A modified β-amyloid hypothesis: intraneuronal accumulation of the β-amyloid peptide—the first step of a fatal cascade. Journal of Neurochemistry. 2004;91(3):513–520. [PubMed] [Google Scholar]

14. Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nature Reviews Neuroscience. 2009;10(11):780–791. [PubMed] [Google Scholar]

15. Zatta P, Drago D, Bolognin S, Sensi SL. Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends in Pharmacological Sciences. 2009;30(7):346–355. [PubMed] [Google Scholar]

16. Hung YH, Bush AI, Cherny RA. Copper in the brain and Alzheimer’s disease. Journal of Biological Inorganic Chemistry. 2010;15(1):61–76. [PubMed] [Google Scholar]

17. Spofforth J, Edin lRC, Eng MRC. Case of aluminium poisoning. The Lancet. 1921;197(5103):p. 1301. [Google Scholar]

18. Chusid JG, Pacella BL, Kopeloff LM, Kopeloff N. Chronic epilepsy in the monkey following multiple intracerebral injection of alumina cream. Proceedings of the Society for Experimental Biology and Medicine. 1951;78:53–54. [PubMed] [Google Scholar]

19. Wills MR, Savory J. Aluminum and chronic renal failure: sources, absorption, transport, and toxicity. Critical Reviews in Clinical Laboratory Sciences. 1989;27(1):59–107. [PubMed] [Google Scholar]

20. Alfrey AC, LeGendre GR, Kaehny D. The dialysis encephalopathy syndrome. Possible aluminium intoxication. The New England Journal of Medicine. 1976;294(4):184–188. [PubMed] [Google Scholar]

21. Altmann P, Cunningham J, Dhanesha U, Ballard M, Thompson J, Marsh F. Disturbance of cerebral function in people exposed to drinking water contaminated with aluminium sulphate: retrospective study of the Camelford water incident. British Medical Journal. 1999;319(7213):807–811. [PMC free article] [PubMed] [Google Scholar]

22. Flaten TP. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Research Bulletin. 2001;55(2):187–196. [PubMed] [Google Scholar]

23. Frecker MF. Dementia in Newfoundland: identification of a geographical isolate? Journal of Epidemiology and Community Health. 1991;45(4):307–311. [PMC free article] [PubMed] [Google Scholar]

24. Neri LC, Hewitt D. Aluminium, Alzheimer’s disease, and drinking water. The Lancet. 1991;338(8763):p. 390. [PubMed] [Google Scholar]

25. Forbes WF, McLachlan DRC. Further thoughts on the aluminum—Alzheimer’s disease link. Journal of Epidemiology and Community Health. 1996;50(4):401–403. [PMC free article] [PubMed] [Google Scholar]

26. Jacqmin H, Commenges D, Letenneur L, Barberger-Gateau P, Dartigues JF. Components of drinking water and risk of cognitive impairment in the elderly. American Journal of Epidemiology. 1994;139(1):48–57. [PubMed] [Google Scholar]

27. Rondeau V, Commenges D, Jacqmin-Gadda H, Dartigues JF. Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study. American Journal of Epidemiology. 2000;152(1):59–66. [PMC free article] [PubMed] [Google Scholar]

28. Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues JF. Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. American Journal of Epidemiology. 2009;169(4):489–496. [PMC free article] [PubMed] [Google Scholar]

29. Lukiw WJ, Kruck TPA, Crapper McLachlan DR. Alterations in human linker histone-DNA binding in the presence of aluminum salts in vitro and in Alzheimer’s disease. NeuroToxicology. 1987;8(2):291–301. [PubMed] [Google Scholar]

30. Bharathi KS, Jagannatha R, Stein R. First evidence on induced topological changes in supercoiled DNA by an aluminium D-aspartate complex. Journal of Biological Inorganic Chemistry. 2003;8(8):823–830. [PubMed] [Google Scholar]

31. Latha KS, Anitha S, Rao KSJ, Viswamitra MA. Molecular understanding of aluminum-induced topological changes in (CCG)12 triplet repeats: relevance to neurological disorders. Biochimica et Biophysica Acta. 2002;1588(1):56–64. [PubMed] [Google Scholar]

32. Muma NA, Singer SM. Aluminum-induced neuropathology: transient changes in microtubule-associated proteins. Neurotoxicology and Teratology. 1996;18(6):679–690. [PubMed] [Google Scholar]

33. Parhad IM, Krekoski CA, Mathew A, Tran PM. Neuronal gene expression in aluminum myelopathy. Cellular and Molecular Neurobiology. 1989;9(1):123–138. [PubMed] [Google Scholar]

34. Oshiro S, Kawahara M, Mika S, et al. Aluminum taken up by transferrin-independent iron uptake affects the iron metabolism in rat cortical cells. Journal of Biochemistry. 1998;123(1):42–46. [PubMed] [Google Scholar]

35. Lukiw WJ, LeBlanc HJ, Carver LA, McLachlan DRC, Bazan NG. Run-on gene transcription in human neocortical nuclei: inhibition by nanomolar aluminum and implications for neurodegenerative disease. Journal of Molecular Neuroscience. 1998;11(1):67–78. [PubMed] [Google Scholar]

36. Bosetti F, Solaini G, Tendi EA, Chikhale EG, Chandrasekaran K, Rapoport SI. Mitochondrial cytochrome c oxidase subunit III is selectively down-regulated by aluminum exposure in PC12S cells. NeuroReport. 2001;12(4):721–724. [PubMed] [Google Scholar]

37. Cox KA, Dunn MA. Aluminum toxicity alters the regulation of calbindin-D28k protein and mRNA expression in chick intestine. Journal of Nutrition. 2001;131(7):2007–2013. [PubMed] [Google Scholar]

38. Johnson VJ, Sharma RP. Aluminum disrupts the pro-inflammatory cytokine/neurotrophin balance in primary brain rotation-mediated aggregate cultures: possible role in neurodegeneration. NeuroToxicology. 2003;24(2):261–268. [PubMed] [Google Scholar]

39. Lukiw WJ, Percy ME, Kruck TP. Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. Journal of Inorganic Biochemistry. 2005;99(9):1895–1898. [PubMed] [Google Scholar]

40. Lin R, Chen X, Li W, Han Y, Liu P, Pi R. Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: blockage by curcumin. Neuroscience Letters. 2008;440(3):344–347. [PubMed] [Google Scholar]

41. Walton JR, Wang MX. APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer’s disease. Journal of Inorganic Biochemistry. 2009;103(11):1548–1554. [PubMed] [Google Scholar]

42. García T, Esparza JL, Giralt M, Romeu M, Domingo JL, Gómez M. Protective role of melatonin on oxidative stress status and RNA expression in cerebral cortex and cerebellum of aβpp transgenic mice after chronic exposure to aluminum. Biological Trace Element Research. 2010;135(1–3):220–232. [PubMed] [Google Scholar]

43. Luo Y, Niu F, Sun Z, et al. Altered expression of Aβ metabolism-associated molecules from d-galactose/AlCl3 induced mouse brain. Mechanisms of Ageing and Development. 2009;130(4):248–252. [PubMed] [Google Scholar]

44. Castorina A, Tiralongo A, Giunta S, Carnazza ML, Scapagnini G, D'Agata V. Early effects of aluminum chloride on beta-secretase mRNA expression in a neuronal model of β-amyloid toxicity. Cell Biology and Toxicology. 2010;26(4):367–377. [PubMed] [Google Scholar]

45. Socorro JM, Olmo R, Teijon C, Blanco MD, Teijon JM. Analysis of aluminum-yeast hexokinase interaction: modifications on protein structure and functionality. Journal of Protein Chemistry. 2000;19(3):199–208. [PubMed] [Google Scholar]

46. Lai JCK, Blass JP. Inhibition of brain glycolysis by aluminum. Journal of Neurochemistry. 1984;42(2):438–446. [PubMed] [Google Scholar]

47. Cho SW, Joshi JG. Inactivation of bakers’ yeast glucose-6-phosphate dehydrogenase by aluminum. Biochemistry. 1989;28(8):3613–3618. [PubMed] [Google Scholar]

48. Kumar V, Bal A, Gill KD. Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminium. Brain Research. 2008;1232:94–103. [PubMed] [Google Scholar]

49. Lemire J, Mailloux R, Puiseux-Dao S, Appanna VD. Aluminum-induced defective mitochondrial metabolism perturbs cytoskeletal dynamics in human astrocytoma cells. Journal of Neuroscience Research. 2009;87(6):1474–1483. [PubMed] [Google Scholar]

50. Mailloux RJ, Hamel R, Appanna VD. Aluminum toxicity elicits a dysfunctional TCA cycle and succinate accumulation in hepatocytes. Journal of Biochemical and Molecular Toxicology. 2006;20(4):198–208. [PubMed] [Google Scholar]

51. Shetty K, Veeranna T, Guru SC. Phosphatase activity against neurofilament proteins from bovine spinal cord: effect of aluminium and neuropsychoactive drugs. Neuroscience Letters. 1992;137(1):83–86. [PubMed] [Google Scholar]

52. Johnson GVW, Cogdill KW, Jope RS. Oral alumimum alters in vitro protein phosphorylation and kinase activities in rat brain. Neurobiology of Aging. 1990;11(3):209–216. [PubMed] [Google Scholar]

53. Julka D, Gill KD. Involvement of altered cytoskeletal protein phosphorylation in aluminum-induced CNS dysfunction. Journal of Biochemical Toxicology. 1996;11(5):227–233. [PubMed] [Google Scholar]

54. Kaur A, Joshi K, Minz RW, Gill KD. Neurofilament phosphorylation and disruption: a possible mechanism of chronic aluminium toxicity in Wistar rats. Toxicology. 2006;219(1–3):1–10. [PubMed] [Google Scholar]

55. Troncoso JC, March JL, Haner M, Aebi U. Effect of aluminum and other multivalent cations on neurofilaments in vitro: an electron microscopic study. Journal of Structural Biology. 1990;103(1):2–12. [PubMed] [Google Scholar]

56. Yamamoto H, Saitoh Y, Yasugawa S, Miyamoto E. Dephosphorylation of τ factor by protein phosphatase 2A in synaptosomal cytosol fractions, and inhibition by aluminum. Journal of Neurochemistry. 1990;55(2):683–690. [PubMed] [Google Scholar]

57. El-Sebae AH, Abdel-Ghany ME, Shalloway D, Zeid MMA, Blancato J, Saleh MA. Aluminum interaction with human brain tau protein phosphorylation by various kinases. Journal of Environmental Science and Health Part B. 1993;28(6):763–777. [PubMed] [Google Scholar]

58. Diaz-Nido J, Avila J. Aluminum induces the in vitro aggregation of bovine brain cytoskeletal proteins. Neuroscience Letters. 1990;110(1-2):221–226. [PubMed] [Google Scholar]

59. Abd-Elghaffar SK, El-Sokkary GH, Sharkawy AA. Aluminum-induced neurotoxicity and oxidative damage in rabbits: protective effect of melatonin. Neuroendocrinology Letters. 2005;26(5):609–616. [PubMed] [Google Scholar]

60. Guy SP, Jones D, Mann DMA, Itzhaki RF. Human neuroblastoma cells treated with aluminium express an epitope associated with Alzheimer’s disease neurofibrillary tangles. Neuroscience Letters. 1991;121(1-2):166–168. [PubMed] [Google Scholar]

61. Kawahara M, Muramoto K, Kobayashi K, Kuroda Y. Functional and morphological changes in cultured neurons of rat cerebral cortex induced by long-term application of aluminum. Biochemical and Biophysical Research Communications. 1992;189(3):1317–1322. [PubMed] [Google Scholar]

62. Savory J, Huang Y, Herman MM, Reyes MR, Wills MR. Tau immunoreactivity associated with aluminum maltolate-induced neurofibrillary degeneration in rabbits. Brain Research. 1995;669(2):325–329. [PubMed] [Google Scholar]

63. Kihira T, Yoshida S, Yase Y, Ono S, Kondo T. Chronic low-Ca/Mg high-Al diet induces neuronal loss. Neuropathology. 2002;22(3):171–179. [PubMed] [Google Scholar]

64. Kawahara M, Kato M, Kuroda Y. Effects of aluminum on the neurotoxicity of primary cultured neurons and on the aggregation of β-amyloid protein. Brain Research Bulletin. 2001;55(2):211–217. [PubMed] [Google Scholar]

65. Campbell A, Kumar A, La Rosa FG, Prasad KN, Bondy SC. Aluminum increases levels of β-amyloid and ubiquitin in neuroblastoma but not in glioma cells. Proceedings of the Society for Experimental Biology and Medicine. 2000;223(4):397–402. [PubMed] [Google Scholar]

66. Praticò D, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VM. Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. The FASEB Journal. 2002;16(9):1138–1140. [PubMed] [Google Scholar]

67. Rodella LF, Ricci F, Borsani E, et al. Aluminium exposure induces Alzheimer’s disease-like histopathological alterations in mouse brain. Histology and Histopathology. 2008;23(4-6):433–439. [PubMed] [Google Scholar]

68. Provan SD, Yokel RA. Aluminum inhibits glutamate release from transverse rat hippocampal slices: role of G proteins, Ca channels and protein kinase C. NeuroToxicology. 1992;13(2):413–420. [PubMed] [Google Scholar]

69. Canales JJ, Corbalán R, Montoliu C, et al. Aluminium impairs the glutamate-nitric oxide-cGMP pathway in cultured neurons and in rat brain in vivo: molecular mechanisms and implications for neuropathology. Journal of Inorganic Biochemistry. 2001;87(1):63–69. [PubMed] [Google Scholar]

70. Meiri H, Banin E, Roll M, Rousseau A. Toxic effects of aluminium on nerve cells and synaptic transmission. Progress in Neurobiology. 1993;40(1):89–121. [PubMed] [Google Scholar]

71. Yang SJ, Huh JW, Lee JE, Choi SY, Kim TU, Cho SW. Inactivation of human glutamate dehydrogenase by aluminum. Cellular and Molecular Life Sciences. 2003;60(11):2538–2546. [PubMed] [Google Scholar]

72. Nday CM, Drever BD, Salifoglou T, Platt B. Aluminium interferes with hippocampal calcium signaling in a species-specific manner. Journal of Inorganic Biochemistry. 2010;104:919–927. [PubMed] [Google Scholar]

73. Hofstetter JR, Vincent I, Bugiani O, Ghetti B, Richter JA. Aluminum-induced decreases in choline acetyltransferase, tyrosine hydroxylase, and glutamate decarboxylase in selected regions of rabbit brain. Neurochemical Pathology. 1987;6(3):177–193. [PubMed] [Google Scholar]

74. Zatta P, Ibn-Lkhayat-Idrissi M, Zambenedetti P, Kilyen M, Kiss T. In vivo and in vitro effects of aluminum on the activity of mouse brain acetylcholinesterase. Brain Research Bulletin. 2002;59(1):41–45. [PubMed] [Google Scholar]

75. Bielarczyk H, Tomaszewicz M, Szutowicz A. Effect of aluminum on acetyl-CoA and acetylcholine metabolism in nerve terminals. Journal of Neurochemistry. 1998;70(3):1175–1181. [PubMed] [Google Scholar]

76. Rao KSJ, Rao GV. Effect of aluminium (Al) on brain mitochondrial monoamine oxidase-A (MAO-A) activity—an in vitro kinetic study. Molecular and Cellular Biochemistry. 1994;137(1):57–60. [PubMed] [Google Scholar]

77. Zatta P, Zambenedetti P, Milanese M. Activation of monoamine oxidase type-B by aluminum in rat brain hom*ogenate. NeuroReport. 1999;10(17):3645–3648. [PubMed] [Google Scholar]

78. Milanese M, Lkhayat MI, Zatta P. Inhibitory effect of aluminum on dopamine β-hydroxylase from bovine adrenal gland. Journal of Trace Elements in Medicine and Biology. 2001;15(2-3):139–141. [PubMed] [Google Scholar]

79. Lai JCK, Lim L, Davison AN. Effects of Cd2+, Mn2+, and AI2+ on rat brain synaptosomal uptake of noradrenaline and serotonin. Journal of Inorganic Biochemistry. 1982;17(3):215–225. [PubMed] [Google Scholar]

80. Kanazirska M, Vassilev PP, Birzon SY, Vassilev PM. Voltage-dependent effect of AI3+ on channel activities in hippocampal neurons. Biochemical and Biophysical Research Communications. 1997;232(1):84–87. [PubMed] [Google Scholar]

81. Csóti T, Gyri J, Salánki J, Erdélyi L. pH-dependent actions of aluminum on voltage-activated sodium currents in snail neurons. NeuroToxicology. 2001;22(1):109–116. [PubMed] [Google Scholar]

82. Platt B, Busselberg D. Combined actions of Pb2+, Zn2+, and AI2+ on voltage-activated calcium channel currents. Cellular and Molecular Neurobiology. 1994;14(6):831–840. [PubMed] [Google Scholar]

83. Pentyala S, Ruggeri J, Veerraju A, et al. Microsomal Ca2+ flux modulation as an indicator of heavy metal toxicity. Indian Journal of Experimental Biology. 2010;48(7):737–743. [PubMed] [Google Scholar]

84. Li L. The biochemistry and physiology of metallic fluoride: action, mechanism, and implications. Critical Reviews in Oral Biology and Medicine. 2003;14(2):100–114. [PubMed] [Google Scholar]

85. Theiss C, Meller K. Aluminum impairs gap junctional intercellular communication between astroglial cells in vitro. Cell and Tissue Research. 2002;310(2):143–154. [PubMed] [Google Scholar]

86. Bizzi A, Crane RC, Autilio Gambetti L, Gambetti P. Aluminum effect on slow axonal transport: a novel impairment of neurofilament transport. Journal of Neuroscience. 1984;4(3):722–731. [PMC free article] [PubMed] [Google Scholar]

87. Siegel N, Suhayda C, Haug A. Aluminum changes the conformation of calmodulin. Physiological Chemistry and Physics. 1982;14(2):165–167. [PubMed] [Google Scholar]

88. Campbell A, Becaria A, Lahiri DK, Sharman K, Bondy SC. Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. Journal of Neuroscience Research. 2004;75(4):565–572. [PubMed] [Google Scholar]

89. Oteiza PI. A mechanism for the stimulatory effect of aluminum on iron-induced lipid peroxidation. Archives of Biochemistry and Biophysics. 1994;308(2):374–379. [PubMed] [Google Scholar]

90. Kaneko N, Sugioka T, Sakurai H. Aluminum compounds enhance lipid peroxidation in liposomes: insight into cellular damage caused by oxidative stress. Journal of Inorganic Biochemistry. 2007;101(6):967–975. [PubMed] [Google Scholar]

91. Verstraeten SV, Oteiza PI. Al-mediated changes in membrane physical properties participate in the inhibition of polyphosphoinositide hydrolysis. Archives of Biochemistry and Biophysics. 2002;408(2):263–271. [PubMed] [Google Scholar]

92. Pandya JD, Dave KR, Katyare SS. Effect of long-term aluminum feeding on lipid/phospholipid profiles of rat brain myelin. Lipids in Health and Disease. 2004;3, article no. 13 [PMC free article] [PubMed] [Google Scholar]

93. Silva VS, Cordeiro JM, Matos MJ, Oliveira CR, Gonçalves PP. Aluminum accumulation and membrane fluidity alteration in synaptosomes isolated from rat brain cortex following aluminum ingestion: effect of cholesterol. Neuroscience Research. 2002;44(2):181–193. [PubMed] [Google Scholar]

94. Ghribi O, Herman MM, Forbes MS, DeWitt DA, Savory J. GDNF protects against aluminum-induced apoptosis in rabbits by upregulating Bcl-2 and Bcl-X and inhibiting mitochondrial Bax translocation. Neurobiology of Disease. 2001;8(5):764–773. [PubMed] [Google Scholar]

95. Kawahara M, Kato-Negishi M, Hosoda R, Imamura L, Tsuda M, Kuroda Y. Brain-derived neurotrophic factor protects cultured rat hippocampal neurons from aluminum maltolate neurotoxicity. Journal of Inorganic Biochemistry. 2003;97(1):124–131. [PubMed] [Google Scholar]

96. Guo GW, Liang YX. Aluminum-induced apoptosis in cultured astrocytes and its effect on calcium homeostasis. Brain Research. 2001;888(2):221–226. [PubMed] [Google Scholar]

97. Strong MJ, Garruto RM. Neuron-specific thresholds of aluminum toxicity in vitro: a comparative analysis of dissociated fetal rabbit hippocampal and motor neuron-enriched cultures. Laboratory Investigation. 1991;65(2):243–249. [PubMed] [Google Scholar]

98. Shaw CA, Petrik MS. Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. Journal of Inorganic Biochemistry. 2009;103(11):1555–1562. [PMC free article] [PubMed] [Google Scholar]

99. Platt B, Carpenter DO, Busselberg D, Reymann KG, Riedel G. Aluminum impairs hippocampal long-term potentiation in rats in vitro and in vivo. Experimental Neurology. 1995;134(1):73–86. [PubMed] [Google Scholar]

100. Wang M, Chen JT, Ruan DY, Xu YZ. The influence of developmental period of aluminum exposure on synaptic plasticity in the adult rat dentate gyrus in vivo. Neuroscience. 2002;113(2):411–419. [PubMed] [Google Scholar]

101. Yokel RA, Allen DD, Meyer JJ. Studies of aluminum neurobehavioral toxicity in the intact mammal. Cellular and Molecular Neurobiology. 1994;14(6):791–808. [PubMed] [Google Scholar]

102. Kaneko N, Takada J, Yasui H, Sakurai H. Memory deficit in mice administered aluminum-maltolate complex. BioMetals. 2006;19(1):83–89. [PubMed] [Google Scholar]

103. Walton JR. A longitudinal study of rats chronically exposed to aluminum at human dietary levels. Neuroscience Letters. 2007;412(1):29–33. [PubMed] [Google Scholar]

104. Sethi P, Jyoti A, Singh R, Hussain E, Sharma D. Aluminium-induced electrophysiological, biochemical and cognitive modifications in the hippocampus of aging rats. NeuroToxicology. 2008;29(6):1069–1079. [PubMed] [Google Scholar]

105. Ribes D, Colomina MT, Vicens P, Domingo JL. Effects of oral aluminum exposure on behavior and neurogenesis in a transgenic mouse model of Alzheimer’s disease. Experimental Neurology. 2008;214(2):293–300. [PubMed] [Google Scholar]

106. Ribes D, Colomina MT, Vicens P, Domingo JL. Impaired spatial learning and unaltered neurogenesis in a transgenic model of alzheimer’s disease after oral aluminum exposure. Current Alzheimer Research. 2010;7(5):401–408. [PubMed] [Google Scholar]

107. Zatta P, Zambenedetti P, Reusche E, et al. A fatal case of aluminium encephalopathy in a patient with severe chronic renal failure not on dialysis. Nephrology Dialysis Transplantation. 2004;19(11):2929–2931. [PubMed] [Google Scholar]

108. Wisniewski HM, Wen GY. Aluminium and Alzheimer’s disease. Ciba Foundation Symposium. 1992;169:142–154. [PubMed] [Google Scholar]

109. Shore D, Wyatt RJ. Aluminum and Alzheimer’s disease. Journal of Nervous and Mental Disease. 1983;171(9):553–558. [PubMed] [Google Scholar]

110. Doll R. Review: Alzheimer’s disease and environmental aluminium. Age and Ageing. 1993;22(2):138–153. [PubMed] [Google Scholar]

111. Harrington CR, Wischik CM, McArthur FK, Taylor GA, Edwardson JA, Candy JM. Alzheimer’s-disease-like changes in tau protein processing: association with aluminium accumulation in brains of renal dialysis patients. The Lancet. 1994;343(8904):993–997. [PubMed] [Google Scholar]

112. Scott CW, Fieles A, Sygowski LA, Caputo CB. Aggregation of tau protein by aluminum. Brain Research. 1993;628(1-2):77–84. [PubMed] [Google Scholar]

113. Crowther RA. Straight and paired helical filaments in Alzheimer disease have a common structural unit. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(6):2288–2292. [PMC free article] [PubMed] [Google Scholar]

114. Bjertness E, Candy JM, Torvik A, et al. Content of brain aluminum is not elevated in Alzheimer disease. Alzheimer Disease and Associated Disorders. 1996;10(3):171–174. [PubMed] [Google Scholar]

115. Landsberg JP, McDonald B, Watt F. Absence of aluminium in neuritic plaque cores in Alzheimer’s disease. Nature. 1992;360(6399):65–68. [PubMed] [Google Scholar]

116. Bouras C, Giannakopoulos P, Good PF, Hsu A, Hof PR, Perl DP. A laser microprobe mass analysis of brain aluminum and iron in dementia pugilistica: comparison with Alzheimer’s disease. European Neurology. 1997;38(1):53–58. [PubMed] [Google Scholar]

117. Candy JM, McArthur FK, Oakley AE, et al. Aluminium accumulation in relation to senile plaque and neurofibrillary tangle formation in the brains of patients with renal failure. Journal of the Neurological Sciences. 1992;107(2):210–218. [PubMed] [Google Scholar]

118. Yumoto S, Kakimi S, Ohsaki A, Ishikawa A. Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer’s disease. Journal of Inorganic Biochemistry. 2009;103(11):1579–1584. [PubMed] [Google Scholar]

119. Wettstein A, Aeppli J, Gautschi K, Peters M. Failure to find a relationship between mnestic skills of octagenarians and aluminum in drinking water. International Archives of Occupational and Environmental Health. 1991;63(2):97–103. [PubMed] [Google Scholar]

120. Martyn CN, Coggon DN, Inskip H, Lacey RF, Young WF. Aluminum concentrations in drinking water and risk of Alzheimer’s disease. Epidemiology. 1997;8(3):281–286. [PubMed] [Google Scholar]

121. McLachlan DRC, Bergeron C, Smith JE, Boomer D, Rifat SL. Risk for neuropathologically confirmed Alzheimer’s disease and residual aluminum in municipal drinking water employing weighted residential histories. Neurology. 1996;46(2):401–405. [PubMed] [Google Scholar]

122. Gauthier E, Fortier I, Courchesne F, Pepin P, Mortimer J, Gauvreau D. Aluminum forms in drinking water and risk of Alzheimer’s disease. Environmental Research. 2000;84(3):234–246. [PubMed] [Google Scholar]

123. Birchall JD, Chappell JS. The chemistry of aluminum and silicon in relation to Alzheimer’s disease. Clinical Chemistry. 1988;34(2):265–267. [PubMed] [Google Scholar]

124. Edwardson JA, Moore PB, Ferrier IN, et al. Effect of silicon on gastrointestinal absorption of aluminium. The Lancet. 1993;342(8865):211–212. [PubMed] [Google Scholar]

125. Gillete-Guyonnet S, Andrieu S, Nourhashemi F, de la Guéronnière V, Grandjean H, Vellas B. Cognitive impairment and composition of drinking water in women: findings of the EPIDOS study. American Journal of Clinical Nutrition. 2005;81(4):897–902. [PubMed] [Google Scholar]

126. Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349(6311):704–706. [PubMed] [Google Scholar]

127. Yankner BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science. 1990;250(4978):279–282. [PubMed] [Google Scholar]

128. Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced by β-amyloid peptides in vitro: the role of peptide assembly state. Journal of Neuroscience. 1993;13(4):1676–1687. [PMC free article] [PubMed] [Google Scholar]

129. Simmons LK, May PC, Tomaselli KJ, et al. Secondary structure of amyloid β peptide correlates with neurotoxic activity in vitro. Molecular Pharmacology. 1994;45(3):373–379. [PubMed] [Google Scholar]

130. Selkoe DJ. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behavioural Brain Research. 2008;192(1):106–113. [PMC free article] [PubMed] [Google Scholar]

131. Exley C, Price NC, Kelly SM, Birchall JD. An interaction of β-amyloid with aluminium in vitro. FEBS Letters. 1993;324(3):293–295. [PubMed] [Google Scholar]

132. Mantyh PW, Ghilardi JR, Rogers S, et al. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide. Journal of Neurochemistry. 1993;61(3):1171–1174. [PubMed] [Google Scholar]

133. Kawahara M, Muramoto K, Bobayashi K, Mori H, Kuroda Y. Aluminum promotes the aggregation of Alzheimer’s amyloid β-protein in vitro. Biochemical and Biophysical Research Communications. 1994;198(2):531–535. [PubMed] [Google Scholar]

134. Kuroda Y, Kawahara M. Aggregation of amyloid beta-protein and its neurotoxicity: enhancement by aluminum and other metals. Tohoku Journal of Experimental Medicine. 1994;174(3):263–268. [PubMed] [Google Scholar]

135. Fasman GD, Perczel A, Moore CD. Solubilization of β-amyloid-(1-42)-peptide: reversing the β-sheet conformation induced by aluminum with silicates. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(2):369–371. [PMC free article] [PubMed] [Google Scholar]

136. House E, Collingwood J, Khan A, Korchazkina O, Berthon G, Exley C. Aluminium, iron, zinc and copper Influence the in vitro formation of amyloid fibrils of Aβ42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. Journal of Alzheimer’s Disease. 2004;6(3):291–301. [PubMed] [Google Scholar]

137. Bondy SC, Truong A. Potentiation of beta-folding of β-amyloid peptide 25–35 by aluminum salts. Neuroscience Letters. 1999;267(1):25–28. [PubMed] [Google Scholar]

138. Chong YH, Suh YH. Aggregation of amyloid precursor proteins by aluminum in vitro. Brain Research. 1995;670(1):137–141. [PubMed] [Google Scholar]

139. Murayama H, Shin R-W, Higuchi J, Shibuya S, Muramoto T, Kitamoto T. Interaction of aluminum with PHFtau in Alzheimer’s disease neurofibrillary degeneration evidenced by desferrioxamine-assisted chelating autoclave method. American Journal of Pathology. 1999;155(3):877–885. [PMC free article] [PubMed] [Google Scholar]

140. Paik SR, Lee JH, Kim DH, Chang CS, Kim J. Aluminum-induced structural alterations of the precursor of the non-Aβ component of Alzheimer’s disease amyloid. Archives of Biochemistry and Biophysics. 1997;344(2):325–334. [PubMed] [Google Scholar]

141. Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein: a possible molecular link between parkinson’s disease and heavy metal exposure. Journal of Biological Chemistry. 2001;276(47):44284–44296. [PubMed] [Google Scholar]

142. Ward B, Walker K, Exley C. Copper(II) inhibits the formation of amylin amyloid in vitro. Journal of Inorganic Biochemistry. 2008;102(2):371–375. [PubMed] [Google Scholar]

143. Khan A, Ashcroft AE, Korchazhkina OV, Exley C. Metal-mediated formation of fibrillar ABri amyloid. Journal of Inorganic Biochemistry. 2004;98(12):2006–2010. [PubMed] [Google Scholar]

144. Ricchelli F, Fusi P, Tortora P, et al. Destabilization of non-pathological variants of ataxin-3 by metal ions results in aggregation/fibrillogenesis. International Journal of Biochemistry and Cell Biology. 2007;39(5):966–977. [PubMed] [Google Scholar]

145. Chaussidon M, Netter P, Kessler M, et al. Dialysis-associated arthropathy: secondary ion mass spectrometry evidence of aluminum silicate in β-microglobulin amyloid synovial tissue and articular cartilage. Nephron. 1993;65(4):559–563. [PubMed] [Google Scholar]

146. f*ckuyama R, Mizuno T, Mizuno T, et al. Age-dependent change in the levels of Aβ40 and Aβ42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Aβ42 to Aβ40 level in cerebrospinal fluid from Alzheimer’s disease patients. European Neurology. 2000;43(3):155–160. [PubMed] [Google Scholar]

147. Kawahara M. Role of calcium dyshomeostasis via amyloid channels in the pathogenesis of Alzheimer’s disease. Current Pharmaceutical Design. 2010;16:2779–2789. [PubMed] [Google Scholar]

148. Dyrks T, Dyrks E, Masters CL, Beyreuther K. Amyloidogenicity of rodent and human βA4 sequences. FEBS Letters. 1993;324(2):231–236. [PubMed] [Google Scholar]

149. Bush AI, Pettingell WH, Multhaup G, et al. Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science. 1994;265(5177):1464–1467. [PubMed] [Google Scholar]

150. Atwood CS, Moir RD, Huang X, et al. Dramatic aggregation of alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. Journal of Biological Chemistry. 1998;273(21):12817–12826. [PubMed] [Google Scholar]

151. Lovell MA, Xie C, Markesbery WR. Protection against amyloid beta peptide toxicity by zinc. Brain Research. 1999;823(1-2):88–95. [PubMed] [Google Scholar]

152. Kawahara M, Arispe N, Kuroda Y, Rojas E. Alzheimer’s disease amyloid β-protein forms Zn2+-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons. Biophysical Journal. 1997;73(1):67–75. [PMC free article] [PubMed] [Google Scholar]

153. Sakamoto T, Saito H, Ishii K, Takahashi H, Tanabe S, Ogasawara Y. Aluminum inhibits proteolytic degradation of amyloid β peptide by cathepsin D: a potential link between aluminum accumulation and neuritic plaque deposition. FEBS Letters. 2006;580(28-29):6543–6549. [PubMed] [Google Scholar]

154. Ricchelli F, Drago D, Filippi B, Tognon G, Zatta P. Aluminum-triggered structural modifications and aggregation of β-amyloids. Cellular and Molecular Life Sciences. 2005;62(15):1724–1733. [PubMed] [Google Scholar]

155. Drago D, Cavaliere A, Mascetra N, et al. Aluminum modulates effects of βamyloid1-42 on neuronal calcium homeostasis and mitochondria functioning and is altered in a triple transgenic mouse model of Alzheimer’s disease. Rejuvenation Research. 2008;11(5):861–871. [PubMed] [Google Scholar]

156. Drago D, Bolognin S, Zatta P. Role of metal ions in the Aβ oligomerization in Alzheimer’s disease and in other neurological disorders. Current Alzheimer Research. 2008;5(6):500–507. [PubMed] [Google Scholar]

157. Exley C, Esiri MM. Severe cerebral congophilic angiopathy coincident with increased brain aluminium in a resident of Camelford, Cornwall, UK. Journal of Neurology, Neurosurgery and Psychiatry. 2006;77(7):877–879. [PMC free article] [PubMed] [Google Scholar]

158. Dickstein DL, Walsh J, Brautigam H, Stockton SD, Jr., Gandy S, Hof PR. Role of vascular risk factors and vascular dysfunction in Alzheimer’s disease. Mount Sinai Journal of Medicine. 2010;77(1):82–102. [PMC free article] [PubMed] [Google Scholar]

159. Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annual Review of Nutrition. 2008;28:197–213. [PubMed] [Google Scholar]

160. Yamanaka K, Minato N, Iwai K. Stabilization of iron regulatory protein 2, IRP2, by aluminum. FEBS Letters. 1999;462(1-2):216–220. [PubMed] [Google Scholar]

161. Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. Journal of Inorganic Biochemistry. 2002;91(1):9–18. [PubMed] [Google Scholar]

162. Oshiro S, Kawahara M, Kuroda Y, et al. Glial cells contribute more to iron and aluminum accumulation but are more resistant to oxidative stress than neuronal cells. Biochimica et Biophysica Acta. 2000;1502(3):405–414. [PubMed] [Google Scholar]

163. Cho H-H, Cahill CM, Vanderburg CR, et al. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. Journal of Biological Chemistry. 2010;285(41):31217–31232. [PMC free article] [PubMed] [Google Scholar]

164. Duce JA, Tsatsanis A, Cater MA, et al. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell. 2010;142(6):857–867. [PMC free article] [PubMed] [Google Scholar]

165. Kong GKW, Miles LA, Crespi GAN, et al. Copper binding to the Alzheimer’s disease amyloid precursor protein. European Biophysics Journal. 2008;37(3):269–279. [PMC free article] [PubMed] [Google Scholar]

166. Namekata K, Imagawa M, Terashi A, Ohta S, Oyama F, Ihara Y. Association of transferrin C2 allele with late-onset Alzheimer’s disease. Human Genetics. 1997;101(2):126–129. [PubMed] [Google Scholar]

167. Lehmann DJ, Schuur M, Warden DR, et al. Transferrin and HFE genes interact in Alzheimer’s disease risk: the Epistasis Project. Neurobiology of Aging. In press. [PubMed] [Google Scholar]

168. Imagawa M, Naruse S, Tsuji S, Fujioka A, Yamaguchi H. Coenzyme Q10, iron, and vitamin B6 in genetically-confirmed Alzheimer’s disease. The Lancet. 1992;340(8820):p. 671. [PubMed] [Google Scholar]

169. Hegde ML, Bharathi P, Suram A, et al. Challenges associated with metal chelation therapy in alzheimer’s disease. Journal of Alzheimer’s Disease. 2009;17(3):457–468. [PMC free article] [PubMed] [Google Scholar]

170. Bush AI, Tanzi RE. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics. 2008;5(3):421–432. [PMC free article] [PubMed] [Google Scholar]

171. Yokel RA. Aluminum chelation: chemistry, clinical, and experimental studies and the search for alternatives to desferrioxamine. Journal of Toxicology and Environmental Health. 1994;41(2):131–174. [PubMed] [Google Scholar]

172. Exley C. Organosilicon therapy in Alzheimer’s disease? Journal of Alzheimer’s Disease. 2007;11(3):301–302. [PubMed] [Google Scholar]

173. Kawahara M, Konoha K, Nagata T, Sadakane Y. Aluminum and human health: its intake, bioavailability and neurotoxicity. Biomedical Research on Trace Elements. 2007;18:111–120. [Google Scholar]

174. Yumoto S, Nagai H, Kobayashi K, Tamate A, Kakimi S, Matsuzaki H. Al incorporation into the brain of suckling rats through maternal milk. Journal of Inorganic Biochemistry. 2003;97(1):155–160. [PubMed] [Google Scholar]

175. Priest ND. The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer: review and study update. Journal of Environmental Monitoring. 2004;6(5):375–403. [PubMed] [Google Scholar]

176. Kawahara M. Auminum and human health: possible link with neurodegenerative disorders. In: Huang S, editor. Metals and Neurodegeneration. Research Signpost; 2010. pp. 15–56. [Google Scholar]

Link between Aluminum and the Pathogenesis of Alzheimer's Disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses (2024)
Top Articles
Latest Posts
Article information

Author: Madonna Wisozk

Last Updated:

Views: 5682

Rating: 4.8 / 5 (48 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Madonna Wisozk

Birthday: 2001-02-23

Address: 656 Gerhold Summit, Sidneyberg, FL 78179-2512

Phone: +6742282696652

Job: Customer Banking Liaison

Hobby: Flower arranging, Yo-yoing, Tai chi, Rowing, Macrame, Urban exploration, Knife making

Introduction: My name is Madonna Wisozk, I am a attractive, healthy, thoughtful, faithful, open, vivacious, zany person who loves writing and wants to share my knowledge and understanding with you.