Epidemiology and Classification of Mastitis (2024)

1. Lucy M.C. Reproduction loss in high-producing dairy cattle: Where will it end? J. Dairy Sci. 2001;84:1277–1293. doi:10.3168/jds.S0022-0302(01)70158-0. [PubMed] [CrossRef] [Google Scholar]

2. De Vliegher S., Fox L.K., Piepers S., McDougall S., Barkema H.W. Invited review: Mastitis in dairy heifers: Nature of disease, potential impact, prevention and control. J. Dairy Sci. 2003;95:1025–1040. doi:10.3168/jds.2010-4074. [PubMed] [CrossRef] [Google Scholar]

3. Ruegg P.L. Investigation of mastitis problems on farms. Vet. Clin. N. Am. Food Anim. Pract. 2003;19:47–73. doi:10.1016/S0749-0720(02)00078-6. [PubMed] [CrossRef] [Google Scholar]

4. Halasa T., Huijps K., Østerås O., Hogeveen H. Economic effects of bovine mastitis management: A review. Vet. Quart. 2007;29:18–31. doi:10.1080/01652176.2007.9695224. [PubMed] [CrossRef] [Google Scholar]

5. Jamali H., Barkema H.W., Jacques M., Levallée-Bourget E., Malouin F., Saini V., Stryhn H., Dufour S. Invited review: Incidence, risk factors, and effects on clinical mastitis reccurence in dairy cows. J. Dairy Sci. 2018;101:4729–4746. doi:10.3168/jds.2017-13730. [PubMed] [CrossRef] [Google Scholar]

6. Stevens M., Piepers S., De Vliegher S. Mastitis prevention and control practices and mastitis treatment strategies associated with the consumption of (critically important) antimicrobials on dairy herds in Flanders, Belgium. J. Dairy Sci. 2016;99:2896–2903. doi:10.3168/jds.2015-10496. [PubMed] [CrossRef] [Google Scholar]

7. Philpot W.N. Proceedings of the 42nd British Natl. Conc. in Stoneleigh. Annual Meeting; Houston, TX, USA: 2003. A backword glance—A forward look; pp. 144–155. [Google Scholar]

8. Ullah S. MSc (Hons.) Master’s Thesis. Department of Veterinary Clinical Medicine and Surgery, University of Agriculture; Faisalabad, Pakistan: 2004. Effect of Mastitis on Milk Composition in Buffaloes under Field Conditions. [Google Scholar]

9. Heikkilä A.M., Nousiainen J.I., Pyörälä S. Costs of clinical mastitis with special reference to premature culling. J. Dairy Sci. 2012;95:139–150. doi:10.3168/jds.2011-4321. [PubMed] [CrossRef] [Google Scholar]

10. Bezman D., Lembierskiy-Kuzin L., Katz G., Merin U., Leitner G. Influence of intramammary infection of a single gland in dairy cows on the cow’s milk quality. J. Dairy Res. 2015;82:304–311. doi:10.1017/S002202991500031X. [PubMed] [CrossRef] [Google Scholar]

11. Sánchez-Macías D., Morales-delaNuez A., Torres A., Hernández-Castellano L.E., Jiménez-Flores R., Cstro N., Argüello A. Effects of somatic cells to carpine milk on cheese quality. Int. Dairy. J. 2013;29:61–67. doi:10.1016/j.idairyj.2012.10.010. [CrossRef] [Google Scholar]

12. Sánchez-Macías D., Hernández-Castellano L.E., Morales-delaNuez A., Herra-Chávez B., Argüello A., Castro N. Somatic cells: A potential tool to accelerate low-fat goat cheese ripening. Int. Dairy J. 2020;102:104598. doi:10.1016/j.idairyj.2019.104598. [CrossRef] [Google Scholar]

13. Blum S., Heller E.D., Krif*cks O., Sela S., Hammer-Muntz O., Leitner G. Identification of a bovine mastitis Escherichia coli subset. Vet. Microbiol. 2008;132:135–148. doi:10.1016/j.vetmic.2008.05.012. [PubMed] [CrossRef] [Google Scholar]

14. Zouharova M., Rysanek D. Multiplex PCR and RPLA Identification of Staphylococcus aureus. Enterotoxigenic Strains from Bulk Tank Milk. Zoonoses Public Health. 2008;55:313–319. doi:10.1111/j.1863-2378.2008.01134.x. [PubMed] [CrossRef] [Google Scholar]

15. Abdullah S.N., You K.Y., Hisham Khamis N., Chong C.Y. Modeling the Dielectric Properties of Cow’s Raw Milk under Vat Pasteurization. Prog. Electromagn. Res. 2019;84:157–166. doi:10.2528/PIERM19052202. [CrossRef] [Google Scholar]

16. Jain N.C. Common mammary pathogens and factors in infection and mastitis. Symposium: Bovine Mastitis. J. Dairy Sci. 1979;62:128–134. doi:10.3168/jds.S0022-0302(79)83214-2. [PubMed] [CrossRef] [Google Scholar]

17. Wellnitz O., Bruckmaier R.M. The innate immune response of the bovine mammary gland to bacterial infection. Vet. J. 2012;192:148–152. doi:10.1016/j.tvjl.2011.09.013. [PubMed] [CrossRef] [Google Scholar]

18. Vakkamäki J., Taponen S., Heikkilä A.M., Pyörälä S. Bacteriological etiology and treatment of mastitis in Finnish dairy herds. Acta Vet. Scand. 2017;59:33. doi:10.1186/s13028-017-0301-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Idriss S.E., Foltys V., Tančin V., Kirchnerová K., Zaujec K. Mastitis pathogens in milk of dairy cows in Slovakia. Slovak J. Anim. Sci. 2013;46:115–119. [Google Scholar]

20. Holko I., Tančin V., Vršková M., Tvarožková K. Prevalence and antimicrobial susceptibility of udder pathogens isolated from dairy cows in Slovakia. J. Dairy Res. 2019;86:436–439. doi:10.1017/S0022029919000694. [PubMed] [CrossRef] [Google Scholar]

21. Smith K.L., Todhunter D.A., Schoenberger P.S. Symposium: Environmental effects on cow health and Performance. J. Dairy Sci. 1985;68:1531–1553. doi:10.3168/jds.S0022-0302(85)80993-0. [PubMed] [CrossRef] [Google Scholar]

22. Zehner M.M., Farnsworth R.J., Appleman R.D., Larntz K., Springer J.A. Growth of Environmental Mastitis Pathogens in Various Bedding Materials. J. Dairy Sci. 1985;69:1932–1941. doi:10.3168/jds.S0022-0302(86)80620-8. [PubMed] [CrossRef] [Google Scholar]

23. Klaas I.C., Zadoks R.N. An update of environmental mastitis: Challenging perceptions. Transbound Emerg. Dis. 2017;65:166–185. doi:10.1111/tbed.12704. [PubMed] [CrossRef] [Google Scholar]

24. Jánosi S., Szigeti G., Rátz F., Laukó T., Kerényi J., Tenk M., Huszenicza G. Prothoteca zopfii mastitis in dairy herds under continental climatic conditions. Vet. Quart. 2001;23:80–83. doi:10.1080/01652176.2001.9695087. [PubMed] [CrossRef] [Google Scholar]

25. Osumi T., Kishimoto Y., Kano R., Maruyama H., Onozaki M., Makimura K., Hasegawa A. Prothoteca zopfii genotypes isolated from cow barns and bovine mastitis in Japan. Vet. Microbiol. 2008;131:419–423. doi:10.1016/j.vetmic.2008.04.012. [PubMed] [CrossRef] [Google Scholar]

26. Eberhart R.J. Coliform mastitis. Vet. Clin. N. Am. 1984;6:287–301. doi:10.1016/S0196-9846(17)30023-X. [PubMed] [CrossRef] [Google Scholar]

27. Nemeth J., Muckle C.A., Gyles C.L. In vitro comparison of bovine mastitis and fecal Escherichia coli isolates. Vet. Microbiol. 1994;40:231–238. doi:10.1016/0378-1135(94)90112-0. [PubMed] [CrossRef] [Google Scholar]

28. Jones G.M. Understanding the Basics of Mastitis. Virginia State University; Petersburg, VA, USA: 2006. pp. 1–7. [Google Scholar]

29. Tančin V., Kirchnerová K., Foltys V., Mačuhova L., Dančinová D. Microbial contamination and somatic cell count of bovine milk striped and after udder preparation for milking. Slovak J. Anim. Sci. 2006;39:214–217. [Google Scholar]

30. King J.S. Streptococcus uberis: A review of its role as a causative organism of bovine mastitis. II. Control of infection. Br. Vet. J. 1981;137:160. doi:10.1016/S0007-1935(17)31733-5. [PubMed] [CrossRef] [Google Scholar]

31. Natzke R.P. Elements of mastitis control. J. Dairy Sci. 1981;64:1431. doi:10.3168/jds.S0022-0302(81)82713-0. [PubMed] [CrossRef] [Google Scholar]

32. Sommerhäuser J., Kloppert B., Wolter W., Zschöck M., Sobiraj A., Failing K. The epidemiology of Staphylococcus aureus infections from subclinical mastitis in dairy cows during a control programme. Vet. Microbiol. 2003;96:91–102. doi:10.1016/S0378-1135(03)00204-9. [PubMed] [CrossRef] [Google Scholar]

33. Sharif A., Umer M., Muhammad G. Mastitis control in dairy production. J. Agric. Soc. Sci. 2009;5:102–105. [Google Scholar]

34. Zigo F., Elečko J., Farkašová Z., Zigová M., Vasiľ M., Ondrašovičová S., Kudeělková L. Preventive methods in reduction of mastitis pathogens in dairy cows. J. Microbiol. Biotechnol. Food Sci. 2019;9:121–126. doi:10.15414/jmbfs.2019.9.1.121-126. [CrossRef] [Google Scholar]

35. Petersson-Wolfe C.S., Mullarky I.K., Jones G.M. Staphylococcus aureus Mastitis: Cause, Detection, and Control. VA Coop. Ext. 2010;404:1–7. [Google Scholar]

36. Hillerton J.E., Bramley R.T., Staker R.T., McKinnon C.H. Patterns of intramammary infection and clinical mastitis over a 5-year period in a closely monitored herd applying mastitis control measures. J. Dairy Sci. 1995;62:39–50. doi:10.1017/S0022029900033653. [PubMed] [CrossRef] [Google Scholar]

37. National Mastitis Council National Mastitis Council Recommended Mastitis Control Program. [(accessed on 8 May 2020)];2001 Available online: http://www.nmconline.org/wp-content/uploads/2016/08/RECOMMENDED-MASTITIS-CONTROL-PROGRAM-International.pdf

38. Gruet P., Maincent P., Berhelot X., Kaltsatos V. Bovine mastitis and intramammary drug delivery: Review and perspectives. Adv. Drug Deliver. Rev. 2001;50:245–259. doi:10.1016/S0169-409X(01)00160-0. [PubMed] [CrossRef] [Google Scholar]

39. Ruegg P. 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017;100:10381–10397. doi:10.3168/jds.2017-13023. [PubMed] [CrossRef] [Google Scholar]

40. Khan M.Z., Khan A. Basic facts of mastitis in dairy animals: Review. Pak. Vet. J. 2006;26:204–208. [Google Scholar]

41. Tančin V., Uhrinčať M. The effect of somatic cell on milk yield and milk flow at quarter level. Vet. Zootec. 2014;66:69–72. [Google Scholar]

42. Shearer J.K., Harris B., Jr. Mastitis in Dairy Goats. Animal Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences; Gainesville, FL, USA: 2003. pp. 1–6. [Google Scholar]

43. Seegers H., Fourichon C., Beaudeau F. Review article: Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 2003;34:475–491. doi:10.1051/vetres:2003027. [PubMed] [CrossRef] [Google Scholar]

44. Peeler E.J., Green M.J., Fitzpatrick J.L., Green L.E. Study of clinical mastitis in British dairy herds with bulk milk somatic cell count less than 150,000 cells/ml. Vet. Rec. 2002;10:170–176. doi:10.1136/vr.151.6.170. [PubMed] [CrossRef] [Google Scholar]

45. Barkema H.W., von Keyserlingk M.A., Kastelic J.P., Lam T.J., Luby C., Roy J.P., Kelton D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015;98:7426–7445. doi:10.3168/jds.2015-9377. [PubMed] [CrossRef] [Google Scholar]

46. Ndahetuye J.B., Persson Y., Nyman A., Tukei M., Ongol M.P., Båge R. Aetiology and prevalence of subclinical mastitis in dairy herds in pre-urban areas of Kigali in Rwanda. Trop. Anim. Health Prod. 2019;51:2037–2044. doi:10.1007/s11250-019-01905-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Ganda E.K., Bisinotto R.S., Decter D.H., Bicalho R.C. Evaluation of an On-Farm Culture System (Accumast) for Fast Identification of Milk Pathogens Associated with Clinical Mastitis in Dairy Cows. PLoS ONE. 2016;11:e0155314. doi:10.1371/journal.pone.0155314. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Asmare A.A., Kassa F. Incidence of dairy cow mastitis and associated risk factors in Sodo town and its surroundings, Wolaila zone, Ethiopia. Slovak J. Anim. Sci. 2017;50:77–89. [Google Scholar]

49. Heikkilä A.M., Liski E., Pyörälä S., Taponen S. Pathogen-specific production losses in bovine mastitis. J. Dairy Sci. 2018;101:9493–9504. doi:10.3168/jds.2018-14824. [PubMed] [CrossRef] [Google Scholar]

50. Saidani M., Messadi L., Soudani A., Daaloul-Jedidi M., Châtre P., Ben Chehida F., Mamlouk A., Mahjoub W., Madec J.Y., Haenni M. Epidemiology, antimicrobial resistance, and extended-spectrum Beta-lactamase-producing enterobacteriaceae in clinical bovine mastitis in Tunisia. Microb. Drug Resist. 2018;24:1242–1248. doi:10.1089/mdr.2018.0049. [PubMed] [CrossRef] [Google Scholar]

51. Zi C., Zeng D., Ling N., Dai J., Xue F., Jiang Y., Li B. An improved assay for rapid detection of viable Staphylococcus aureus cells by incorporating surfactant and PMA treatments in qPCR. BMC Microbiol. 2018;18:132. doi:10.1186/s12866-018-1273-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Todhunter D.A., Smith K.L., Hogan J.S. Growth of Gram-negative bacteria in dry cow secretion. J. Dairy Sci. 1990;73:363–372. doi:10.3168/jds.S0022-0302(90)78682-1. [PubMed] [CrossRef] [Google Scholar]

53. Fox L.K., Gay J.M. Contagious mastitis. Vet. Clin. N. Am. Food Anim. Pract. 1993;9:475–487. doi:10.1016/S0749-0720(15)30615-0. [PubMed] [CrossRef] [Google Scholar]

54. Zadoks R.N., Middleton J.R., McDougall S., Katholm J., Schukken Y.H. Molekular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. Mammary Gland Biol. 2011;164:357–372. doi:10.1007/s10911-011-9236-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Burvenich C., van Merris V., Mehrzad J., Diez-Fraile A., Duchateau L. Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 2003;34:521–564. doi:10.1051/vetres:2003023. [PubMed] [CrossRef] [Google Scholar]

56. Menzies F.D., Bryson D.G., McCallion T., Matthews D.I. A study of mortality among suckler and dairy cows in Northern Ireland in 1992. Vet. Rec. 1995;137:531–536. doi:10.1136/vr.137.21.531. [PubMed] [CrossRef] [Google Scholar]

57. Lehtolainen T. Ph.D. Thesis. Faculty of Veterinary Medicine, University of Helsinky; Helsinki, Finland: 2004. Escherichia Coli Mastitis: Bacterial Factors and Host Response. [Google Scholar]

58. Suriyasathap*rn W., Heuer C., Noordhuizen-Stassen E.N., Schukken Y.H. Hyperketonaemia and the impairment of udder defence: A review. Vet. Res. 2000;31:397–412. doi:10.1051/vetres:2000128. [PubMed] [CrossRef] [Google Scholar]

59. Leininger D.J., Roberson J.R., Elvinger F., Ward D., Akers R.M. Evaluation of frequent milkout for treatment of cows with experimentally induced Escherichia coli masitit*. J. Am. Vet. Med. Assoc. 2003;222:63–66. doi:10.2460/javma.2003.222.63. [PubMed] [CrossRef] [Google Scholar]

60. van Werven T., Noordhuizen-Stassen E.N., Daemen A.J.J.M., Schukken Y.H., Brand A., Burvenich C. Preinfection in vitro chemotaxis, phagocytosis, oxidative burst, and expression of CD11/CD18 receptors and their predictive capacity on the outcome of mastitis inducted in dairy cows with Escherichia coli. J. Dairy Sci. 1997;80:67–74. doi:10.3168/jds.S0022-0302(97)75913-7. [PubMed] [CrossRef] [Google Scholar]

61. Schukken Y.H., Bennett G.J., Zurakowski M.J., Sharkey H.L., Rauch B.J., Thomas M.J., Ceglowski B., Saltman R.L., Belomestnykh N., Zadoks R.N. Randomized clinical trial to evaluate the efficacy of 5-day ceftiofur hydrochloride intramammary treatment on nonsevere gram-negative clinical mastitis. J. Dairy Sci. 2011;94:6203–6215. doi:10.3168/jds.2011-4290. [PubMed] [CrossRef] [Google Scholar]

62. Kehrli M.E.J., Harp J.A. Immunity in the mammary gland. Vet. Clin. N. Am. Food Anim. Pract. 2001;17:495–516. doi:10.1016/S0749-0720(15)30003-7. [PubMed] [CrossRef] [Google Scholar]

63. Hogan J., Smith K.L. Coliform mastitis. Vet. Res. 2002;34:507–519. doi:10.1051/vetres:2003022. [PubMed] [CrossRef] [Google Scholar]

64. Dosogne H., Meyer E., Sturk A., van Loom J., Massaet-Leën A.M., Burvenich C. Effect of enrofloxacin treatment on plasma endotoxin during bovine Escherichia coli mastitis. Inflamm. Res. 2002;51:201–205. doi:10.1007/PL00000293. [PubMed] [CrossRef] [Google Scholar]

65. Bradley A.J., Green M.J. A study of the incidence and significance of intramammary enterobacterial infections acquired during the dry period. J. Dairy Sci. 2000;83:1857–1965. doi:10.3168/jds.S0022-0302(00)75072-7. [PubMed] [CrossRef] [Google Scholar]

66. Tančin V., Mikláš Š., Mačuhová L. A review: Possible physiological and environmental factors affecting milk production and udder health of dairy cows. Slov. J. Anim. Sci. 2018;51:32–40. [Google Scholar]

67. Ericsson Unnerstad H., Lindberg A., Persson Walker K., Ekman T., Artursson K., Nilsson-Ost M., Bengtsson B. Microbial aetiology of acute clinical mastitis and agent-specific risk factors. Vet. Microbiol. 2009;137:90–97. doi:10.1016/j.vetmic.2008.12.005. [PubMed] [CrossRef] [Google Scholar]

68. Radostit* O.M., Gay C.C., Hinchcliff K.W., Constable P.D. Veterinary medicine: A textbook of diseases of cattle, horses, sheep, pigs and goats. Can. Vet. J. 2007;10:673–762. [Google Scholar]

69. Ribeiro M.G., Motta R.G., Paes A.C., Allendorf S.D., Salerno T., Siqueira A.K., Fernandes M.C., Lara G.H.B. Communication: Peracute bovine mastitis caused by Klebsiella pneumoniae. Arq. Bras. Med. Vet. Zootec. 2008;60:485–488. doi:10.1590/S0102-09352008000200031. [CrossRef] [Google Scholar]

70. Schukken Y.H., Chuff M., Moroni P., Gurjar A., Santisteban C., Welcome F., Zadoks R. The “other” gram-negative bacteria in mastitis: Klebsiella, Serratia, and more. Vet. Clin. N. Am. Food Anim. Pract. 2012;28:239–256. doi:10.1016/j.cvfa.2012.04.001. [PubMed] [CrossRef] [Google Scholar]

71. Oliveira L., Hulland C., Ruegg P.L. Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J. Dairy Sci. 2013;96:7538–7549. doi:10.3168/jds.2012-6078. [PubMed] [CrossRef] [Google Scholar]

72. Wilson D.J., Gonzalez R.N., Case K.L., Garrison L.L., Grohn Y. Comparison of seven antibiotic treatments with no treatment for bacteriological efficacy against bovine mastitis pathogens. J. Dairy Sci. 1999;82:1664–1670. doi:10.3168/jds.S0022-0302(99)75395-6. [PubMed] [CrossRef] [Google Scholar]

73. Hertl J.A., Schukken Y.H., Welcome F.L., Tauer L.W., Gröhn Y.T. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. J. Dairy Sci. 2014;97:1465–1480. doi:10.3168/jds.2013-7266. [PubMed] [CrossRef] [Google Scholar]

74. Bannerman D.D., Paape M.J., Hare W.R., Hope J.C. Characterization of bovine innate immune response to intramammary infection with Klebsiella pneumoniae. J. Dairy Sci. 2014;87:2420–2432. doi:10.3168/jds.S0022-0302(04)73365-2. [PubMed] [CrossRef] [Google Scholar]

75. Zadoks R.N., Gillespie B.E., Barkema H.W., Sampimon O.C., Oliver S.P., Schukken Y.H. Clinical, epidemiological and molecular characteristics of Streptococcus uberis infections in dairy herds. Epidemiol. Infect. 2003;130:335–349. doi:10.1017/S0950268802008221. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Davies P.L., Leigh J.A., Bradley A.J., Archer S.C., Emes R.D., Green M.J. Molecular epidemiology of Streptococcus uberis clinical mastitis in daily herds: Strain heterogeneity and transmission. J. Clin. Microbiol. 2016;54:68–74. doi:10.1128/JCM.01583-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Cruz Colque J.I., Devriese L.A., Haesebrouck F. Streptococci and Enterococci associated with tonsils of cattle. Lett. Appl. Microbiol. 1993;16:72–74. doi:10.1111/j.1472-765X.1993.tb00346.x. [PubMed] [CrossRef] [Google Scholar]

78. Lopez-Benavides M.G., Williamson J.H., Pullinger G.D., Lacy-Hubert S.J., Cursons R.T., Leigh J.A. Field observations on the variation of Streptococcus uberis populations in pasture-based dairy farm. J. Dairy Sci. 2007;90:5558–5566. doi:10.3168/jds.2007-0194. [PubMed] [CrossRef] [Google Scholar]

79. Leach K.A., Archer S.C., Breen J.E., Green M.J., Ohnstad I.C., Tuer S., Bradley A.J. manure as cow bedding: Potential benefits and risky for UK dairy farms. Vet. J. 2015;206:123–130. doi:10.1016/j.tvjl.2015.08.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Tassi R., McNeilly N., Fitzpatrick J.L., Fontaine M.C., Reddick D., Ramage C., Lutton M., Schukken Y.H., Zadoks R.N. Strain-specific pathogenicity of putative host-adapted and nonadapted strains of Streptococcus uberis in dairy cattle. J. Dairy Sci. 2013;96:5129–5145. doi:10.3168/jds.2013-6741. [PubMed] [CrossRef] [Google Scholar]

81. Hughes J. Bedding Systems and Mastitis. Mastitis Conference in Stoneleigh. [(accessed on 14 May 2020)];1999 Available online: http://www.britishmastitisconference.org.uk/BMC1999papers/Hughes.pdf

82. Bramley A.J., Dodd F.H. Reviews of the progress of dairy science: Mastitis control—Progress and prospects. J. Dairy Res. 1984;51:481–512. doi:10.1017/S0022029900023797. [PubMed] [CrossRef] [Google Scholar]

83. Wilkinson A. To Seal or Not to Seal: Internal Teat Sealant Strategies. British National Mastitis Council Regional Meeting in Stoneleigh. [(accessed on 8 May 2020)];2003 :16–20. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.562.4544&rep=rep1&type=pdf

84. Denis M., Parlane N.A., Lacy-Hulbert S.J., Summers E.L., Buddle B.M., Wedlock D.N. Bactericidal activity of macrophages against Streptococcus uberis is different in mammary gland secretions of lactating and drying off cows. Vet. Immunol. Immunopathol. 2006;114:111–120. doi:10.1016/j.vetimm.2006.08.001. [PubMed] [CrossRef] [Google Scholar]

85. Samson O., Gaudout N., Schmitt E., Schukken Y.H., Zadoks R. Use of on-farm data to guide treatment and control mastitis caused by Streptococcus uberis. J. Dairy Sci. 2016;99:7690–7699. doi:10.3168/jds.2016-10964. [PubMed] [CrossRef] [Google Scholar]

86. Milne M.H., Biggs A.M., Barrett D.C., Young F.J., Doherty S., Innocent G.T., Fitzpatrick J.L. Treatment of perzistent intramammary infections with Streptococcus uberis in dairy cows. Vet. Rec. 2005;157:245–250. doi:10.1136/vr.157.9.245. [PubMed] [CrossRef] [Google Scholar]

87. Pyörälä S. Treatment of mastitis during lactation. Ir. Vet. J. 2009;62:40–44. doi:10.1186/2046-0481-62-S4-S40. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Todhunter D.A., Smith K.L., Hogan J.S. Environmental streptococcal intramammary infections of the bovine mammary gland. J. Dairy Sci. 1995;78:2366–2374. doi:10.3168/jds.S0022-0302(95)76864-3. [PubMed] [CrossRef] [Google Scholar]

89. McDougall S., Parkinson T.J., Leyland M., Anniss F.M., Fenwick S.G. Duration of infection and strain variation in Streptococcus uberis isolated from cows’ milk. J. Dairy Sci. 2004;87:2062–2072. doi:10.3168/jds.S0022-0302(04)70024-7. [PubMed] [CrossRef] [Google Scholar]

90. Lam T.J.G.M. Ph.D. Thesis. Utrecht University; Utrecht, The Netherlands: 1996. Dynamics of Bovine Mastitis: A Field Study in Low Somatic Cell Count Herds. [Google Scholar]

91. Watt C.J. Ph.D. Thesis. University of Oxford; Oxford, UK: 1999. The Epidemiology of Intramammary Infection in Dairy Cows, with Particular Reference to Streptococcus Uberis. [Google Scholar]

92. Zadoks R.N., Allore H.G., Barkema H.W., Sampion O.C., Wellenberg G.J., Gröhn Y.T., Schukken Y.H. Cow-and quarter-level risk factors of Streptococcus uberis and Staphylococcus aureus mastitis. J. Dairy Sci. 2001;84:2649–2663. doi:10.3168/jds.S0022-0302(01)74719-4. [PubMed] [CrossRef] [Google Scholar]

93. Lyhs U., Kulkas L., Katholm J., Waller K.P., Saha K., Tomusk R.J., Zadoks R.N. Streptococcus agalactiae serotype IV in humans and cattle, northen Europe. Emerg. Infect. Dis. 2016;22:2097–2103. doi:10.3201/eid2212.151447. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Martinez G., Harel J., Higgins R., Lacouture S., Daignault D., Gottschalk M. Characterization of Streptococcus agalactiae isolates of bovine and human origin by randomly amplified polymorphic DNA analysis. J. Clin. Microbiol. 2000;30:71–78. [PMC free article] [PubMed] [Google Scholar]

95. Jensen N.E. Experimenal bovine group-B streptococcal mastitis induced by strains of human and bovine origin. Nord. Vet. Med. 1982;34:441–450. [PubMed] [Google Scholar]

96. Goli M., Ezzatpanah H., Ghavami M., Chamani M., Doosti A. Prevalence assessment of Staphylococcus aureus and Streptococcus agalactiae by multiplex polymerase chain reaction (M-PCR) in bovine sub-clinical mastitis and their effect on somatic cell count (SCC) in Iran dairy cows. Afr. J. Microbiol. Res. 2012;6:3005–3010. [Google Scholar]

97. Merl K., Abdulmawjood A., Lämmler C., Zschöck M. Determination of epidemiological relationships of Streptococcus agalactiae isolated from bovine mastitis. FEMS Microbiol. Lett. 2003;223:87–92. doi:10.1016/S0378-1097(03)00564-0. [PubMed] [CrossRef] [Google Scholar]

98. Sandy C. Milk Quality Pays: Streptococcus agalactiae Mastitis. A review. Vet. J. 2011;187:1–5. [Google Scholar]

99. Tolla T. Ph.D. Thesis. Addis Ababa University, Faculty of Veterinary Medicine; Debre Zeit, Ethiopia: 1996. Bovine Mastitis in Indigenous Zebu and Borona Holstein Crosses in Southern Wollo. [Google Scholar]

100. Kassa F., Ayano A.A., Abera M., Kiros A. Longitudinal study of bovine mastitis in Hawassa and Wendo Genet Small Holder Dairy farms. Glob. J. Sci. Frontier Res. 2014;14:33–41. [Google Scholar]

101. Lakew B.T., Fayera T., Ali Y.M. Risk factors for bovine mastitis with the isolation and identification of Streptococcus agalactiae from farms in and around Haramaya district, eastern Ethiopia. Trop. Anim. Health Prod. 2019;51:1507–1513. doi:10.1007/s11250-019-01838-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Tomazi T., de Souza Filho A.F., Heinemann M.B., dos Santos M.V. Molecular characterization and antimicrobial susceptibility pattern of Streptococcus agalactiae isolated from clinical mastitis in dairy cattle. PLoS ONE. 2018;13:e0199561. doi:10.1371/journal.pone.0199561. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Edmonson P. Blitz therapy for eradication of Streptococcus agalactiae infections in dairy cattle. Practice. 2011;33:33–37. doi:10.1136/inp.c7449. [CrossRef] [Google Scholar]

104. Mullarky I.K., Su C., Frieze N., Park Y.H., Sordillo L.M. Staphylococcus aureus agr genotypes with enterotoxin production capabilities can resist neutrophil bactericidal activity. Infect. Immun. 2001;69:45–51. doi:10.1128/IAI.69.1.45-51.2001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Lammers A. Ph.D. Thesis. Utrecht University; Utrecht, The Netherlands: 2000. Pathogenesis of Staphylococcus Aureus Mastitis. In Vitro Studies on Adhesion, Invasion and Gene Expression. [Google Scholar]

106. Erskine R.J., Wagner S.A., De Graves F.J. Mastitis therapy and pharmacology. Vet. Clin. N. Am. Food Anim. Pract. 2003;19:109–138. doi:10.1016/S0749-0720(02)00067-1. [PubMed] [CrossRef] [Google Scholar]

107. Zhao X., Lacasse P. Mammary tissue damage during bovine mastitis: Causes and control. J. Dairy Sci. 2008;86:57–65. doi:10.2527/jas.2007-0302. [PubMed] [CrossRef] [Google Scholar]

108. Trinidad P., Nickerson S.C., Alley T.K. Prevalence of intramammary infection and teat canal colonization in unbred and primigravid dairy heifers. J. Dairy Sci. 1990;73:107–114. doi:10.3168/jds.S0022-0302(90)78652-3. [PubMed] [CrossRef] [Google Scholar]

109. Tenhagen B.A., Hansen I., Reinecke A., Heuwieser W. Prevalence of pathogens in milk samples of dairy cows with clinical mastitis and in heifers at first parturition. J. Dairy Sci. 2009;73:639–647. doi:10.1017/S0022029908003786. [PubMed] [CrossRef] [Google Scholar]

110. Barkema H.W., Schukken Y.H., Zadoks R.N. Invited review: The role of cow, pathogen and treatment regimen in therapeutic success of bovine Staphylococcus aureus mastitis. J. Dairy Sci. 2006;89:1877–1895. doi:10.3168/jds.S0022-0302(06)72256-1. [PubMed] [CrossRef] [Google Scholar]

111. De Oliviera A.P., Watts J.L., Salmon S.L., Aarestrup F.M. Antimicrobial susceptibility of Staphylococcus aureus isolated from bovine mastitis in Europe and the United States. J. Dairy Sci. 2000;83:855–862. doi:10.3168/jds.S0022-0302(00)74949-6. [PubMed] [CrossRef] [Google Scholar]

112. Erskine R.J., Walker R.D., Bolin C.A., Barlett P.C., White D.G. Trends in antibacterial susceptibility of mastitis pathogens during a seven-year period. J. Dairy Sci. 2002;85:1111–1118. doi:10.3168/jds.S0022-0302(02)74172-6. [PubMed] [CrossRef] [Google Scholar]

113. Makovec J.A., Ruegg P.L. Antimicrobial resistance of bacteria isolated from dairy cow milk sampes submitted for bacterial culture: 8905 samples (1994–2001) J. Am. Vet. Med. Assoc. 2003;222:1582–1589. doi:10.2460/javma.2003.222.1582. [PubMed] [CrossRef] [Google Scholar]

114. Tenhagen B.A., Köster G., Wallmann J., Heuwieser W. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J. Dairy Sci. 2006;89:2542–2551. doi:10.3168/jds.S0022-0302(06)72330-X. [PubMed] [CrossRef] [Google Scholar]

115. Laevens H., Deluyker H., Schukken Y.H., De Meulemeester L., Vandermeersch R., De Muelenaere E., De Kruif A. Influence of parity and stage of lactation on the somatic cell count in bacteriologically negative dairy cows. J. Dairy Sci. 1997;80:3219–3226. doi:10.3168/jds.S0022-0302(97)76295-7. [PubMed] [CrossRef] [Google Scholar]

116. Tančin V., Ipema A.H., Hogewerf P. Interaction of Somatic Cell Count and Quarter Milk Flow Patterns. J. Dairy Sci. 2007;90:2223–2228. doi:10.3168/jds.2006-666. [PubMed] [CrossRef] [Google Scholar]

117. Reksen O., Sølverød L., Østerås O. Relationships between milk culture results and milk yield in Norwegian dairy cattle. J. Dairy Sci. 2007;90:4670–4678. doi:10.3168/jds.2006-900. [PubMed] [CrossRef] [Google Scholar]

118. Schalm O.W., Carroll E.J., Jain N.C. Bovine Mastitis. Lea and Febiger; Philadelphia, PA, USA: 1971. p. 360. [Google Scholar]

119. Sampimon O.C., Zadoks R.N., De Vliegher S., Supré K., Haesebrouck F., Barkema H.W., Sol J., Lam T.J. Performance of API Staph ID 32 and Staph-Zym for identification of coagulase-negative staphylococci isolated from bovine milk samples. Vet. Microbiol. 2009;136:300–305. doi:10.1016/j.vetmic.2008.11.004. [PubMed] [CrossRef] [Google Scholar]

120. Lundberg A., Nyman A., Unnerstad H.E., Waller K.P. Prevalence of bacterial genotypes and outcome of bovine clinical mastitis due to Streptococcus dysgalactiae and Streptococcus uberis. Acta Vet. Scand. 2014;56:80. doi:10.1186/s13028-014-0080-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Rantamäki L.K., Müller H.-P. Phenotypic characterization of Streptococcus dysgalactiae isolates from bovine mastitis by their binding to host derived proteins. Vet. Microbiol. 1995;46:415–426. doi:10.1016/0378-1135(95)00046-D. [PubMed] [CrossRef] [Google Scholar]

122. Yeruham I., Schimmer A., Brami Y. Epidemiological and bacteriological aspects of mastitis associated with yellow-jacket wasps (Vespula germanica) in dairy cattle herd. J. Vet. Med. B Infect. Dis. Vet. Public Health. 2002;49:461–463. doi:10.1046/j.1439-0450.2002.00487.x. [PubMed] [CrossRef] [Google Scholar]

123. Brubaker R.R. Mechanisms of bacterial virulence. Annu. Rev. Microbiol. 1985;39:21–50. doi:10.1146/annurev.mi.39.100185.000321. [PubMed] [CrossRef] [Google Scholar]

124. Capuco A.V., Bright S.A., Pankey J.W., Wood D.L., Miller R.H., Bitman J. Increased susceptibility to intramammary infection following removal of teat canal keratin. J. Dairy Sci. 1992;75:2126–2130. doi:10.3168/jds.S0022-0302(92)77972-7. [PubMed] [CrossRef] [Google Scholar]

125. Fernandes J.B.C., Zanardo L.G., Galvão N.N., Carvalho I.A., Nero L.A., Moreira M.A.S. Escherichia coli from clinical mastitis: Serotypes and virulence factors. J. Vet. Diagn. Investig. 2011;23:1146–1152. doi:10.1177/1040638711425581. [PubMed] [CrossRef] [Google Scholar]

126. Bradley A.J., Breen J.E., Payne B., White V., Green M.J. An investigation of the efficacy of a polyvalent mastitis vaccine using different vaccination regimens under field conditions in the United Kingdom. J. Dairy Sci. 2015;98:1706–1720. doi:10.3168/jds.2014-8332. [PubMed] [CrossRef] [Google Scholar]

127. Schwarz D., Duesterbeck U.S., Failing K., Köning S., Brügemann K., Zschöck M., Wolter W., Czerny C.P. Somatic cell counts and bacteriological status in quarter foremilk samples of cows in Hesse, Germany. J. Dairy Sci. 2010;92:5716–5728. doi:10.3168/jds.2010-3223. [PubMed] [CrossRef] [Google Scholar]

128. Giraudo J.A., Calzolari A., Rampone H., Rampone A., Giraudo A.T., Bogni C., Larriestra A., Nagel R. Field trials of a vaccine against bovine mastitis. 1. Evaluation in heifers. J. Dairy Sci. 1997;80:845–853. doi:10.3168/jds.S0022-0302(97)76006-5. [PubMed] [CrossRef] [Google Scholar]

129. Schukken Y.H., Günter J., Fitzpatrick J., Fontaine M.C., Goetze L., Holst O., Leigh J., Petzl W., Schuberth H.J., Sipka A., et al. Host-response patterns of intramammary infections in dairy cows. Vet. Immunol. Immunopathol. 2011;144:270–289. doi:10.1016/j.vetimm.2011.08.022. [PubMed] [CrossRef] [Google Scholar]

130. Aitken S.L., Coel C.M., Sordillo L.M. Immunopathology of mastitis: Insights into disease recognition and resolution. J. Mammary Gland Biol. Neoplasia. 2011;16:291–304. doi:10.1007/s10911-011-9230-4. [PubMed] [CrossRef] [Google Scholar]

131. Bannerman D.D. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J. Anim. Sci. 2009;87:10–25. doi:10.2527/jas.2008-1187. [PubMed] [CrossRef] [Google Scholar]

132. Hernández-Castellano L., Wall S.K., Stephan R., Corti S., Bruckmaier R.M. Milk somatic cell count, lactate dehydrogenase activity, and immunoglobulin G concentration associated with mastitis caused by different pathogens: A field study. Schweizer Archiv Tierheilkunde. 2017;159:283–290. doi:10.17236/sat00115. [PubMed] [CrossRef] [Google Scholar]

133. Sipka A.A., Gurjar A., Klaessig S., Duhamel G.E., Skidmore A., Swinkels J., Cox P., Schukken Y. Prednisolone and cefapirin act synergistically in resolving experimental Escherichia coli mastitis. J. Dairy Sci. 2013;95:4406–4418. doi:10.3168/jds.2012-6455. [PubMed] [CrossRef] [Google Scholar]

134. Wall S.K., Hernández-Castellano E., Ahmadpour A., Bruckmaier R.M., Wellnitz O. Differential glucocorticoid-induced closure of the blood-milk barrier during lipopolysaccharide-and lipoteichoic acid-induced mastitis in dairy cows. J. Dairy Sci. 2016;99:7544–7553. doi:10.3168/jds.2016-11093. [PubMed] [CrossRef] [Google Scholar]

135. Wall S.K., Wellnitz O., Hernández-Castellano L.E., Ahmadpour A., Bruckmaier R.M. Supraphysiological oxytocin increases the transfer of immunoglobulins and other blood components to milk during lipopolysaccharide and lipoteichoic acid-induced mastitis in dairy cows. J. Dairy. Sci. 2016;99:9165–9173. doi:10.3168/jds.2016-11548. [PubMed] [CrossRef] [Google Scholar]

136. Grohn Y.T., Rajala-Schultz P.J., Allore H.G., Delorenzo M.A., Hertl J.A., Galligan D.T. Optimizing replacement of dairy cows: Modelling the effects of diseases. Prev. Vet. Med. 2003;61:27–43. doi:10.1016/S0167-5877(03)00158-2. [PubMed] [CrossRef] [Google Scholar]

137. St. Rose S.G., Swinkels J.M., Kremer W.D.J., Kruitwagen C.L.J.J., Zadoks R.N. Effect of penethamate hydriodide treatment on bacteriological cure, somatic cell count and milk production of cows and quarters with chronic subclinical Streptococcus uberis or Streptococcus dysgalactiae infections. J. Dairy Res. 2003;70:387–394. doi:10.1017/S0022029903006460. [PubMed] [CrossRef] [Google Scholar]

138. Berry E.A., Hogeveen H., Hillerton J.E. Decision tree analysis to evaluate dry cow strategies. J. Dairy Res. 2004;71:409–418. doi:10.1017/S0022029904000433. [PubMed] [CrossRef] [Google Scholar]

139. Bar D., Tauer L.W., Bennet G., Gonzalez R.N., Hertl J.A., Schukken Y.H., Schulte H.F., Welcome F.L., Grohn Y.T. The cost of generic clinical mastitis in dairy cows as estimated by using dynamic programming. J. Dairy Sci. 2008;91:2205–2214. doi:10.3168/jds.2007-0573. [PubMed] [CrossRef] [Google Scholar]

140. Cha E., Bar D., Hertl J.A., Tauer L.W., Bennett G., Gonzalez R.N., Schukken Y.H., Welcome F.L., Gröm Y.T. The cost and management of different types of clinical mastitis in dairy cows estimated by dynamic programming. J. Dairy Sci. 2011;94:4476–4487. doi:10.3168/jds.2010-4123. [PubMed] [CrossRef] [Google Scholar]

141. Dahl M.O., De Vries A., Maunsell F.P., Galvao K.N., Risco C.A., Hernandez J.A. Epidemiologic and economic analyses of pregnancy loss attributable to mastitis in primiparous Holstein cows. J. Dairy Sci. 2018;101:10142–10150. doi:10.3168/jds.2018-14619. [PubMed] [CrossRef] [Google Scholar]

142. Coulon J.B., Gasqui P., Barnouin J., Ollier A., Pradel P., Pomiès D. Effect of mastitis and related-germ on milk yield and composition during naturally-occurring udder infections in dairy cows. Anim. Res. 2002;51:383–393. doi:10.1051/animres:2002031. [CrossRef] [Google Scholar]

143. Halasa T., Nielen M., De Roos A.P.W., van Hoorne R., de Jong G., Lam T.J.G.M., van Werven T., Hogeveen H. Production loss due to new subclinical mastitis in Dutch dairy cows estimated with a test-day model. J. Dairy Sci. 2009;92:599–606. doi:10.3168/jds.2008-1564. [PubMed] [CrossRef] [Google Scholar]

144. Gonçalves J.L., Tomazi T., Barreiro J.R., Beuron D.C., Arcari M.A., Lee S.H., Martins C.M.M.R., Araujo J.P., Jr., dos Santos M.V. Effects of bovine subclinical mastitis caused by Corynobacterium spp. On somatic cell count, milk yield and composition by comparing contralateral quarters. Vet. J. 2016;209:87–92. doi:10.1016/j.tvjl.2015.08.009. [PubMed] [CrossRef] [Google Scholar]

145. Bobbo T., Ruegg P.L., Stocco G., Fiore E., Gianesella M., Pasotto D., Bittante G., Cecchinato A. Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows. J. Dairy Sci. 2017;100:4868–4883. doi:10.3168/jds.2016-12353. [PubMed] [CrossRef] [Google Scholar]

146. Gonçalves J.L., Kamphuis C., Martins C.M.M.R., Barreiro J.R., Tomazi T., Gameiro A.H., Hogeveen H., dos Santos M.V. Bovine subclinical mastitis reduces milk yield and economic return. Livest. Sci. 2018;210:25–32. doi:10.1016/j.livsci.2018.01.016. [CrossRef] [Google Scholar]

147. Gussmann M., Steeneveld W., Kirkeby C., Hogeveen H., Nielen M., Farre M., Halasa T. Economic and epidemiological impact of different intervention strategies for clinical contagious mastitis. J. Dairy Sci. 2018;102:1483–1493. doi:10.3168/jds.2018-14939. [PubMed] [CrossRef] [Google Scholar]

148. Hogeveen H., Huijps K., Lam T.J.G.M. Economic aspects of mastitis: New developments. N. Z. Vet. J. 2011;59:16–23. doi:10.1080/00480169.2011.547165. [PubMed] [CrossRef] [Google Scholar]

149. McInerney J.P., Howe K.S., Schepers J.A. A Framework for economic analysis of disease in farm livestock. Prev. Vet. Med. 1992;13:137–154. doi:10.1016/0167-5877(92)90098-Z. [CrossRef] [Google Scholar]

150. Yalcin C., Scott A.W., Logue D.N., Gunn J. The economic impact of mastitis-control procedures used in scottish dairy herds with high bulk-tank somatic-cell counts. Prev. Vet. Med. 1999;41:135–149. doi:10.1016/S0167-5877(99)00052-5. [PubMed] [CrossRef] [Google Scholar]

151. Van Soest F.J.S., Santman-Berends I.M.G.A., Lam T.J.G.M., Hogeveen H. Failure and preventive costs of mastitis on Dutch dairy farms. J. Dairy Sci. 2016;99:8365–8374. doi:10.3168/jds.2015-10561. [PubMed] [CrossRef] [Google Scholar]

Epidemiology and Classification of Mastitis (2024)

FAQs

What is the classification of mastitis? ›

Mastitis is inflammation of the breast and can be categorized into lactational and non-lactational mastitis. Lactational mastitis is the most common form of mastitis. Non-lactational mastitis includes periductal mastitis and idiopathic granulomatous mastitis (IGM).

What is the epidemiology of mastitis in humans? ›

Mastitis and breast abscess occur in all populations, whether or not breastfeeding is the norm. The reported incidence varies from a few to 33% of lactating women, but is usually under 10% (Table 1). Most studies have major methodological limitations, and there are no large prospective cohort studies.

What is the epidemiology of mastitis in cows? ›

Epidemiology of Subclinical Mastitis in Cattle

All dairy herds have cows with subclinical mastitis; however, prevalence of infected cows varies from 5%–75%, and quarters from 2%–40%.

What are the different levels of mastitis? ›

Clinical cases that include only local signs are referred to as mild or moderate. If the inflammatory response includes systemic involvement (fever, anorexia, shock), the case is termed severe. If the onset is very rapid, as often occurs with severe clinical cases, it is termed acute or severe mastitis.

Top Articles
Latest Posts
Article information

Author: Nicola Considine CPA

Last Updated:

Views: 6332

Rating: 4.9 / 5 (69 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Nicola Considine CPA

Birthday: 1993-02-26

Address: 3809 Clinton Inlet, East Aleisha, UT 46318-2392

Phone: +2681424145499

Job: Government Technician

Hobby: Calligraphy, Lego building, Worldbuilding, Shooting, Bird watching, Shopping, Cooking

Introduction: My name is Nicola Considine CPA, I am a determined, witty, powerful, brainy, open, smiling, proud person who loves writing and wants to share my knowledge and understanding with you.